首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auger measurements have been made on the concentration of barium and oxygen diffusing out of a pore and slot onto the surface of a simulated tungsten dispenser cathode. Profiles of concentration vs distance from the source were obtained at different temperatures. It is found that at cathode operating temperatures very little gradient of oxygen concentration exists on the surface, and under steady state conditions Ba is the main diffusing species. Ba diffusion distances derived are consistent with previous measurements. However it is found that this distance increases with concentration in spite of the fact that the Ba surface lifetime decreases with concentration. Time dependent measurements made on a clean surface show that the rate of Ba and O build up is limited by the supply rate of oxygen to the surface. This supply rate is not diffusion limited but seems to be limited by the mechanism generating free oxygen. A comparison of emission microscope measurements on a tungsten matrix dispenser cathode with the simulated cathode data indicates that similar oxygen generation processes may be controlling the activation of these cathodes.  相似文献   

2.
A comparative study has been made between a mixed metal (60% Ir-40%W) coated cathode and a “B” cathode during activation and also in their respective steady states. The rate limiting factor in the activation of the coated cathode is the oxidation of the initial Ba type surface to a BaO type surface. Since on the “B” cathode Ba and O emerge together, its activation is faster than the coated cathode. In the steady state of operation, both cathodes exhibit a surface near BaO stoichiometry which is the optimum composition for the minimum work function. This work function is about 0.2 eV lower on the coated cathode than on the “B” cathode. An accelerated life test at 1575 K indicated a gradual decrease of the Ir concentration in the coating.  相似文献   

3.
Many surface studies of impregnated cathodes involve a measurement of the Ba590, O510 and W170 Auger peak heights. This paper shows how these measurements plotted in terms of O/Ba versus W/Ba concentration ratios can be used to interpret experimental results on impregnated B-type cathodes. Data are presented from actual cathodes and simulated cathode surfaces using well defined BaO films on W. These results as well topographic data will be compared to various calculated models. It will be shown that an active B-type cathode consists of nearly a monolayer of BaO on W with a slight excess of O compared to Ba. This excess O, however, is associated with W rather than the BaO. Ageing increases the O/Ba ratio and this takes place principally by the removal of Ba from the BaO surface, again with the excess O being associated with the W rather than the BaO. The work function increase during ageing corresponds only to the area-decrease of BaO. If the surface accumulates so much O that it exceeds the available empty Ba sites (i.e., all W is covered by Ba or O), then any additional O appears to sit on top of the remaining Ba and the surface will be poisoned. These conclusions are not only the result of work function observations but are also consistent with interatomic Auger analysis of Ba---O interactions as well as surface plasmon and ISS results. Toporgaphic data obtained from pore/impregnant regions are also in good agreement with calculated values of partial coverage of typical tungstate and impregnant residues.  相似文献   

4.
In the Proceedings of the 1982 Tri-Service Cathode Workshop, the authors described studies of the reactivations of tungsten-based dispenser cathodes following poisonings of the kind expected during shelf storage of a microwave tube [Appl. Surface Sci. 16 (1983) 73]. Further work on the problems of reactivation following such poisoning is described here. In addition to coated (“M”) and uncoated tungsten matrix cathodes, the tungsten-iridium mixed metal matrix (“MM”) cathode has been studied. In general reproducible results have been obtained from different examples of the same type of “M” and uncoated cathodes. However, although some “MM” cathodes have exhibited good reactivation characteristics, a large variation has been observed between different examples of “MM” cathodes. The composition of the impregnant in the dispenser cathodes has been found to be an important factor in determining the reactivation rate of a cathode. As the barium oxide concentration in the impregnant increases, the cathode will recover faster from a poisoning exposure. Studies of the poisoning caused by combinations of different gases suggest that poisoning will occur if there is a sufficient exposure of a poisoning agent, regardless of the total exposure. The exposures necessary to poison a cathode are so small, that poisoning of the cathode appears probable during shelf storage of a microwave tube. The reactivation results have been summarised in terms of the times and temperatures required to achieve both a given current density and a given degree of reactivation from a poisoned cathode. The studies also indicate that the limiting step during the reactivation process involves the dispensing of fresh material to the cathode surface rather than the desorption or conversion of a poisoned surface layer.  相似文献   

5.
Eu2O3 and Sc2O3 co-doped W matrix impregnated cathodes have been prepared by the powder metallurgy method. The constitution of active elements on activated cathode surface is analyzed by in-situ Auger electron spectroscopy. It is found that although Eu exists in the matrix, no Eu is found on the cathode surface due to the formation of a stable Eu containing compound. Sc, Ba and O diffuse to the surface of the cathode and form an active surface layer during the activation period whereas the stable Eu-compound cannot liberate free Eu, which can diffuse from the cathode to the surface. The active substance of Sc, Ba and O on the cathode surface contribute to the emission property.  相似文献   

6.
In order to use Ion Scattering Spectroscopy (ISS) for studies of tungsten dispenser cathodes, the relevant ISS sensitivities must be measured. Calibrations have been made using a polycrystalline tungsten ribbon with controlled coverages of oxygen, barium and combinations thereof. Auger Electron Spectroscopy (AES) was used to monitor these controlled surfaces and the escape depths of the tungsten Auger electrons in barium and oxygen have been measured. The absolute ISS sensitivities of all three elements were found to be strongly dependent on the barium coverage of the tungsten surface. This effect has been attributed to the lowering of the work function of the tungsten surface caused by the barium adsorption. However, the relative ISS sensitivities of the three elements are not affected in this way when both barium and oxygen (or oxygen alone) are present on the tungsten surface. ISS spectra of such surfaces have been analyzed quantitatively and found to be in reasonable agreement with AES measurements. The analysis has also been applied to ISS spectra of uncoated tungsten matrix dispenser cathodes in an active state and following exposure to oxygen. Compared to AES, these spectra indicate less oxygen on the active cathode surfaces as a result of the oxygen (associated with barium) not contributing to the oxygen ISS signal. Comparisons of the spectra from the active and oxygen poisoned cathodes suggest that oxygen adsorbed during the oxygen exposure sits on the topmost barium layer whereas the oxygen on the active cathode surface does not.  相似文献   

7.
8.
A study has been made of the variation in work function, surface composition, and topography of 5:3:2 impregnated tungsten dispenser cathodes made under carefully controlled conditions (pedigreed cathodes). Despite these conditions several cathodes had unexpected deposits on their emitting surfaces, and one showed a variation in work function and composition across the surface during activation.  相似文献   

9.
中间层Re的加入对覆膜钡钨阴极性能的改善   总被引:1,自引:0,他引:1       下载免费PDF全文
李玉涛  张洪来  刘濮鲲  张明晨 《物理学报》2006,55(12):6677-6683
研究了一种新型的覆膜钡钨阴极——双层膜(Os-W/Re膜)钡钨阴极.对这种新型阴极的发射性能进行了测试,重点对其老炼前后表面薄膜的微观形貌进行了分析,表明中间层Re膜的加入使覆膜钡钨阴极的性能得到了改善.通过对Os-W双元合金膜钡钨阴极和Os-W/Re双层膜钡钨阴极发射特性的比较,发现Os-W/Re双层膜阴极的直流发射性能好于Os-W合金膜阴极.对两种阴极激活后发射表面的X射线光电子能谱分析表明,Os-W/Re双层膜阴极激活后表面形成的三元合金膜是其发射特性优于Os-W合金膜阴极的主要原因.应用扫描电子显微镜分析比较两种阴极激活老炼后的表面状态,结果表明:Os-W合金膜阴极在老炼一段时间后,其表面薄膜出现开裂,这会导致阴极发射均匀性下降;而Os-W/Re双层膜阴极在同样老炼条件下,发射表面薄膜均匀并保持完整,从而确保覆膜钡钨阴极发射均匀性和工作可靠性. 关键词: 双层膜钡钨阴极 Os-W/Re膜 Os-W膜 薄膜开裂  相似文献   

10.
Mixed metal matrix cathodes have inherent non-uniformity and patchiness of emission due to the presence of two-alloy phase structure on the surface. I-V characteristics of cathode studied in a close spaced diode configuration is one of the easy and cost effective methods to estimate the variation of work function on the cathode surface. Tungsten iridium mixed metal matrix dispenser cathodes of Ø1.4 mm (80 wt.% W-20 wt.% Ir) have been fabricated in the laboratory and their I-V characteristics have been investigated in diode configuration. In this paper the model suggested by Tonnerre et al. has been used to find out the work function distribution of W-Ir cathodes from I-V characteristics. An attempt has been made to correlate the microstructure with the work function values.  相似文献   

11.
分别从基体和铝酸盐两方面优化了钡钨阴极.在基体方面,首先采用窄粒度钨粉结合放电等离子体烧结获得了孔径分布窄的基体;再利用射频等离子体球化技术制备了球形钨粉,采用球形钨粉制备了多孔基体,获得了孔通道光滑、内孔连通性好、孔径分布更加窄的基体.与窄粒度钨粉基体相比,球形钨粉制备的阴极,空间电荷限制区的斜率由1.25增加至1.37,发射均匀性得到提高,拐点电流密度由6.6 A·cm–2增至6.96 A·cm–2.在此基础上,采用液相法改善了铝酸盐物相组成,发现空间电荷限制区的斜率增加至1.44,拐点电流密度增加至21.2 A·cm–2.通过理论计算对钡钨阴极发射的物理本质进行了研究,发现钡钨阴极发射规律遵循偶极子理论.  相似文献   

12.
It is shown that in the evaluation of Auger spectra, as measured on cathode surfaces, the elemental sensitivities have to be corrected for differences in elemental number density. The substrate and the surface covering material have to be treated differently in the analysis. The result for normal M-type cathodes is that — besides the Ba---O cover — there is an excess oxygen concentration on the surface of about two times the Ba---O concentration. This in spite of the fact that the oxygen to barium peak-to-peak height ratio in the measured spectra is about equal to 2. For a degraded M-cathode the excess oxygen level is found to be much higher than for the normal cathodes. A new type of scandate cathode is described and discussed. Its analysis shows more Ba and, relatively, much less excess oxygen than for the M-type cathodes. This may account for the substantially higher emission.  相似文献   

13.
The ac conductivity measurements have been carried out for the activated Ba/SrO cathode with additional 5% Ni powder for every 100 h acceleration life time at the temperature around 1125 K. The ac conductivity was studied as a function of temperature in the range 300-1200 K after conversion and activation of the cathode at 1200 K for 1 h in two cathodes face to face closed configuration. The experimental results prove that the hopping conductivity dominate in the temperature range 625-770 K through the traps of the WO3 associate with activation energy Ea = 0.87 eV, whereas from 500-625 K it is most likely to be through the traps of the Al2O3 with activation energy of Ea = 1.05 eV. The hopping conductivity at the low temperature range 300-500 K is based on Ni powder link with some Ba contaminants in the oxide layer stricture which indicates very low activation energy Ea = 0.06 eV.  相似文献   

14.
Azad J. Darbandi  Horst Hahn   《Solid State Ionics》2009,180(26-27):1379-1387
Nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3 − δ (LSCF) and La0.25Ba0.25Sr0.5Co0.2Fe0.8O3 − δ (LBSCF) with a high specific surface area (~ 40 m²/g) were synthesized by spray pyrolysis. The as prepared powder was characterized by X-ray diffraction, nitrogen adsorption, and high-resolution electron microscopy. Water-based dispersions of pure LSCF, LBSCF and mixtures containing gadolinium doped ceria (GDC) with agglomerate sizes of approx. 50 nm were prepared by application of ultrasonic energy. Spin coating was employed to prepare porous thin films. The thickness of the films (≤1 μm) was more than 10–20 times lower than conventional cathode layers. The interfacial polarization resistances of LBSCF cathodes are 19, 38, and 101 mΩ cm2 at 650, 600, and 550 °C, respectively. The high performance is attributed to the nanometer-sized grain dimensions, the nanoporosity, and the large specific surface area within the cathode layer. The novel approach of preparing nanoparticulate thin film cathodes suggests strong benefit for Micro Solid Oxide Fuel Cells operating below 500 °C.  相似文献   

15.
The reactivity of the (0 0 0 1)-Cr–Cr2O3 surface towards water was studied by means of periodic DFT + U. Several water coverages were studied, from 1.2H2O/nm2 to 14.1H2O/nm2, corresponding to ¼, 1, 2 and 3 water/Cr at the (0 0 0 1)-Cr2O3 surface, respectively. With increasing coverage, water gradually completes the coordination sphere of the surface Cr atoms from 3 (dry surface) to 4 (1.2 and 4.7H2O/nm2), 5 (9.4H2O/nm2) and 6 (14.1H2O/nm2). For all studied coverages, water replaces an O atom from the missing above plane. At coverages 1.2 and 4.7H2O/nm2, the Cr–Os (surface oxygen) acid–base character and bond directionality govern the water adsorption. The adsorption is molecular at the lowest coverage. At 4.7H2O/nm2, molecular and dissociative states are isoenergetic. The activation energy barrier between the two states being as low as 12 kJ/mol, allowing protons exchanges between the OH groups, as evidenced by ab inito molecular dynamics at room temperature. At coverages of 9.4 and 14.1H2O/nm2, 1D- (respectively, 2D-) water networks are formed. The resulting surface terminations are –Cr(OH)2 and –Cr(OH)3– like, respectively. The increased stability of those terminations as compared to the previous ones are due to the stabilization of the adsorbed phase through a H-bond network and to the increase in the Cr coordination number, stabilizing the Cr (t2g) orbitals in the valence band. An atomistic thermodynamic approach allows us to specify the temperature and water pressure domains of prevalence for each surface termination. It is found that the –Cr(OH)3-like, –Cr(OH)2 and anhydrous surfaces may be stabilized depending on (TP) conditions. Calculated energies of adsorption and OH frequencies are in good agreement with published experimental data and support the full hydroxylation model, where the Cr achieves a 6-fold coordination, at saturation.  相似文献   

16.
Alumina thin films were deposited on hot work tool steel AISI H11 at a growth temperature of 500 to 600 °C by plasma assisted chemical vapour deposition and were studied with respect to the structure and composition by X-ray diffraction and electron-probe microanalysis, respectively. The electrical power density at the cathode was varied from 2.7 to 6.6 W/cm2. Within the investigated process window the following characteristic phases could be identified: γ-alumina and α-alumina as well as mixtures thereof. The alumina phase formation was found to be strongly influenced by deposition temperature and electrical power density at the substrate. It is shown that constitution changes due to a reduction in substrate temperature can be avoided by increasing the electrical power density at the cathode, which leads to an increase in both ion flux and ion energy at the substrate surface. PACS 52.77.Dq; 68.55.Nq; 68.55.Ac; 61.10.Nz  相似文献   

17.
郝广辉  李泽鹏  高玉娟  周亚昆 《物理学报》2019,68(3):37901-037901
为了研究热阴极表面形貌对电子发射能力的影响,使用飞秒激光微纳加工技术在光滑的热阴极表面制备不同尺寸和形状的周期性条纹结构,并使用相同的制备工艺对阴极进行除气和激活.测试结果显示:阴极表面周期性条纹结构可有效增强阴极的电子发射能力,正交双向条纹结构表面阴极的发射电流密度高于单向条纹结构表面阴极的发射电流密度,而且随条纹结构尺寸的降低,阴极的电子发射能力逐渐增强.对阴极表面形貌进行仿真,发现微尖顶端位置在强电场的作用下具有较强的电子发射能力.当阴极表面微尖底部直径与高度比值(r/h)较小时,微尖的侧面仍是阴极电子发射的主要区域,但是随着r/h减小,阴极的电子发射区域逐渐由微尖侧面发射向微尖顶端转移,场助电子发射效应成为阴极电子发射的主要组成部分.  相似文献   

18.
The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.  相似文献   

19.
Sc2O3-W matrix cathodes have been prepared by using a liquid-liquid doping method combined with high-temperature sintering. The microstructure and physical behavior of active substances of scandia-doped tungsten matrix and impregnated cathode has been studied by SEM and AES methods. The results show that the matrix has a homogeneous structure composed of W grains with spherical shape and superfine Sc2O3 particles dispersed uniformly over and among W grains. After impregnation, this Sc-type impregnated cathode has high emission capability. Space-charge-limited current density could reach 52 A/cm2 at 850 °Cb. The high emission results from a Ba-Sc-O active layer with a thickness of about 80 nm, which is formed at the cathode surface during the activation period. Both the decrease of the thickness of active surface layer and the decrease of the content of Sc at the surface could lead to the degradation of current density during operation.  相似文献   

20.
Some of the techniques commonly used (e.g. SLEEP and thermionic emission microscope) for measuring emission or work function uniformity of thermionic cathode surfaces require the use of very low or near zero current densities, thus the cathode is characterized at current densities and temperatures much lower than that of a normally operating cathode. The system reported on here uses a high voltage pulse technique and is capable of measuring emission densities in the range 1 to 80 A/cm2 at normal cathode operating temperatures. The cathode surface is scanned with an anode having a 0.025 mm aperture whose position is controlled by computer operated stepping motors. The current through the aperture to a collector electrode is measured using a sample-and-hold amplifier. Pulsing and sampling are computer synchronized with the scanning, and data for each pulse are accumulated and can be processed and displayed in several ways using the computer, including a detailed “three-dimensional” map of either the electron emission density or work function variations. The entire surface of the cathode or any portion of it can be mapped in steps as small as 0.001 mm (1μm), but typically steps of 5–100 μm were used. Measurements are presented illustrating the uniformity or nonuniformity of the electron emission densities and work functions for type-B and type-M cathodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号