首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
In this paper, a new bidirectional wavelength division multiplexing radio-over-fiber (WDM-RoF) using Subcarrier Multiplexing/Amplitude Shift Keying (SCM/ASK) is proposed which shares the same wavelengths for both up-link and down-link. A bidirectional reflective filter (BRF) is utilized in the upstream link to provide a reliable bidirectional optical channel. WDM is used to further increase the capacity of system. Simulation of the proposed scheme demonstrates 1 Gbps down- and up-link data stream for 16 channels over the length of 25 km with acceptable Q-factor (>6 dB).  相似文献   

2.
In this paper, a novel colorless wavelength division multiplexing-passive optical network (WDM-PON) system using injection locking and electro-absorption transceiver (EAT) is proposed and demonstrated experimentally. This system has advantages, high data transmission, small downlink signal effect to uplink signal and less polarization sensitivity, compared to the system using reflective semiconductor optical amplifier (RSOA). Downlink signal modulates the right side carrier of the double side band signal by using injection locking. EAT functions as both photo detector in downlink signal and modulator for uplink signal, simultaneously. A possible cross absorption modulation effect from the EAT is analyzed experimentally. Bidirectional transmission of 1.25 Gbps and 622 Mbps for downlink and uplink, respectively, were verified through 23 km standard single mode fiber (SSMF).  相似文献   

3.
In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10−9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10−9.  相似文献   

4.
In this paper we demonstrate the feasibility to deploy a wavelength division multiplexing passive optical network (WDM-PON) of a 30 km standard single-mode fiber (SSMF-28) carrying 160 Gbps data in downstream and 40 Gbps through the uplink. The developed method is based on the comparison between two WDM-PON systems of 4 channels with the same characteristics, using two different formats of modulation in OLTs. The first system uses the NRZ-ASK in the downlink direction, while the second uses the NRZ-DQPSK.  相似文献   

5.
The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.  相似文献   

6.
In this investigation, we experimentally investigate an extended reach (ER) time-division-multiplexed passive optical network (TDM-PON) using four wavelength-multiplexed channels to achieve 16 Gb/s downlink and 10 Gb/s uplink traffic. Each downlink signal uses the highly spectral efficient 4 Gb/s OFDM-QAM, and each uplink signal is generated by signal remodulating the downlink signal via a reflective semiconductor amplifier (RSOA) at 2.5 Gb/s non-return-to-zero (NRZ). In addition, the performance of the proposed ER TDM-PON has also been analyzed and discussed.  相似文献   

7.
In this paper, we have investigated the wavelength division multiplexed (WDM) system using ring network topology. This network is used to increase the capacity with eight optical add/drop multiplexers (OADMs) by using dispersion compensating fiber and semiconductor optical amplifier (SOA) to achieve a distance up to 1600 km. It is observed that network shows the acceptable results at 15 Gbps data rate with 100 GHz channel spacing. The OADM nodes are also varied to investigate the network performance in the term of BER and Q-factor.  相似文献   

8.
In this paper, we investigate four-wave mixing (FWM) effects in the ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON) system and propose an efficient channel allocation scheme to mitigate the FWM impact. This scheme is formed by grouping signal channels into several blocks with different channel spacing. Through numerical analysis and simulations, our proposed scheme is verified to be able to reduce the FWM effects and have higher bandwidth efficiency than the traditional unequal channel allocation scheme. The simulation results also demonstrate that our proposed scheme can achieve nearly 4 dB increases in optical power budget of the UDWDM-PON systems at the BER of 1e−3, in comparison with the equal spaced channel scheme.  相似文献   

9.
The fiber-wireless (FiWi) access network is a prestigious architecture for next generation (NG) access network. NG access networks are proposed to provide high data rate, broadband multiple services, scalable bandwidth, and flexible communication for manifold wireless end-users (WEUs). In this paper, the FiWi access network is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul with data rate of 2.5 Gb/s and wireless fidelity-worldwide interoperability for microwave access (WiFi–WiMAX) technologies at the wireless front-end along a 50 m–5 km wireless links with data rate of 54–30 Mb/s, respectively. The performance of the optical backhaul and the wireless front-end, in the proposed FiWi access network, has been evaluated in terms of bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR) of the physical (PHY) layer. The scalability of the optical backhaul based on maximum split ratio of 1/32 for each wavelength channel and a fiber length of 24 km from the central office (CO) to the access point (AP) is analyzed with bit error rate (BER) of 10−9.  相似文献   

10.
In this article, the spectrum sliced dense wavelength division multiplexed passive optical network (SS-DWDM–PON) has been investigated as a power efficient and cost effective solution for optical access networks. In this work an AWG demultiplexer is used to operate as slicing system. The high speed SS-DWDM system has been realized and investigated for 32 channels with data rate up to 3 Gb/s using broadband ASE source (LED). The 3 Gb/s signals both non-return-to-zero (NRZ) and return-to-zero (RZ) were demonstrated in 40 km optical fiber link with BER < 10−12. The results obtained here demonstrate that SS-DWDM is well suited for Fiber-to-the-Home (FTTH) network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号