首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 55 毫秒
1.
M. Walker  M. Draxler 《Surface science》2006,600(16):3327-3336
The initial growth of Pt on the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) surfaces has been studied by coaxial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Prior to Pt deposition, the atomic structure of the near-surface regions of the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) structures were studied using CAICISS, finding changes to the interlayer spacings due to the adsorption of oxygen. Deposition of Pt on the Ni(1 1 0)-(3 × 1)-O surface led to a random substitutional alloy in the near-surface region at Pt coverages both below and in excess of 1 ML. In contrast, when the surface was treated with 1800 L of atomic oxygen in order to form a NiO(1 1 0) surface, a thin Pt layer was formed upon room temperature Pt deposition. XPS and LEED data are presented throughout to support the CAICISS observations.  相似文献   

2.
The initial stage of cubic silicon carbide (3C-SiC) growth on a Si(0 0 1) surface using dimethylsilane (DMS) as a source gas was observed using scanning tunneling microscopy (STM) and reflection high-energy electron diffraction (RHEED). It was found that the dimer vacancies initially existing on the Si(0 0 1)-(2 × 1) surface were repaired by the Si atoms in DMS molecules, during the formation of the c(4 × 4) surface. From the STM measurement, nucleation of SiC was found to start when the Si surface was covered with the c(4 × 4) structure but before the appearance of SiC spots in the RHEED pattern. The growth mechanism of SiC islands was also discussed based on the results of RHEED, STM and temperature-programmed desorption (TPD).  相似文献   

3.

Objective

To evaluate the correlation between findings from diffusion weighted imaging (DWI) and microvascular density (MVD) measurements in VX2 liver tumors after transarterial embolization ablation (TEA).

Materials and Methods

Eighteen New Zealand white rabbits were used in this study. VX2 tumor cells were implanted in livers by percutaneous puncture under computed tomography (CT) guidance. Two weeks later, all rabbits underwent conventional magnetic resonance imaging (MRI) (T1 and T2 imaging), DWI, (b = 100, 600, and 1000 s/mm2) and TEA. MRI was performed again1 week after TEA. Liver tissue was then harvested and processed for hematoxylin and eosin (H&E) staining and immunohistochemical staining for CD31to determine MVD.

Results

VX2 liver tumors were successfully established in all 18 rabbits. Optimal contrast was achieved with a b value of 600 s/mm2.The maximum pre-operative apparent diffusion coefficient (ADC)difference value was 0.28 × 10− 3 ± 0.10 × 10− 3 mm2/s, and was significantly different (P < 0.001) from the maximum postoperative ADCdifference value of 0.47 × 10− 3 ± 0.10 × 10− 3 mm2/s. However, the mean ADC value for the entire tumor was not significantly correlated with MVD (r = 0.221, P = 0.379), nor was the ADC value for the regions of viable tumor (r = − 0.044, P = 0.862). However, the maximum postoperative ADCdifference value was positively correlated with MVD(r = 0.606, F = 12.247, P = 0.003).

Conclusion

DWI is effective to evaluate the therapeutic efficacy of TEA. The maximum ADCdifference offers a promising new method to noninvasively assess tumor angiogenesis.  相似文献   

4.
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 × 2)-S and c(2 × 2)-S surface structures formed by exposing the (1 × 1) phase of Ir{1 0 0} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 × 2)-S and 0.16 for the c(2 × 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 ± 0.01 Å and 3.33 ± 0.01 Å, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{1 0 0} transition metal surfaces: 0.09 Å for p(2 × 2)-S and 0.02 Å for c(2 × 2)-S structures. The (1 × 5) reconstruction, which is the most stable phase for clean Ir{1 0 0}, is completely lifted and a c(2 × 2)-S overlayer is formed after exposure to H2S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking.  相似文献   

5.
The aim of the present study is to demonstrate the feasibility to form well-ordered nanoholes on InP(1 0 0) surfaces by low Ar+ ion sputtering process in UHV conditions from anodized aluminum oxide (AAO) templates. This process is a promising approach in creating ordered arrays of surface nanostructures with controllable size and morphology. To follow the Ar+ ion sputtering effects on the AAO/InP surfaces, X-ray photoelectron spectroscopy (XPS) was used to determine the different surface species. In4d and P2p core level spectra were recorded on different InP(1 0 0) surfaces after ions bombardment. XPS results showed the presence of metallic indium on both smooth InP(1 0 0) and AAO/InP(1 0 0) surfaces. Finally, we showed that this experiment led to the formation of metallic In dropplets about 10 nm in diameter on nanoholes patterned InP surface while the as-received InP(1 0 0) surface generated metallic In about 60 nm in diameter.  相似文献   

6.
A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 1017 ions/cm2 and 2 × 1017 ions/cm2, respectively.  相似文献   

7.
Investigation on a new electrospun gel polymer electrolyte consisting of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) has been made. Its characteristics were investigated by scanning electron microscopy, FT-IR, Differential Scanning Calorimeter (DSC) analysis. This kind of gel polymer electrolyte had a high ionic conductivity about 3.2 × 10− 3 S cm− 1 at room temperature, and exhibited a high electrochemical stability up to 5.0 V versus Li+/Li, good mechanical strength and stability to allow safe operation in rechargeable lithium-ion polymer batteries. A Li/GPE/LiFePO4 cell delivered a high discharge capacity when it was evaluated at 0.1 °C—rate at 25 °C (167.8 mAh g− 1). And a very stable cycle performance also existed under this low current density.  相似文献   

8.
TaC coatings with hybrid, (2 0 0) and (2 2 0) texture structure were prepared on carbon/carbon (C/C) composites by isothermal chemical vapor deposition with TaCl5-Ar-C3H6 system. The residual stress, hardness and ablation behaviors of the different coatings were characterized by Raman spectra, nano-indentation and oxyacetylene flame ablation machine respectively. Results shown tensile stress exists in the TaC coatings and increases when texture orientation turns from hybrid to (2 2 0) and (2 0 0), while nano-indentation hardness of the coatings also obeys the same trend. The deposited coatings could improve the ablation-resistance properties of C/C composites effectively. The texture structure also had great effects on the ablation properties and ablation morphologies of the coatings. The mass ablation rate obviously decreases when the texture structure changes from hybrid orientation to (2 0 0) and (2 2 0) orientations. The hybrid orientation and (2 0 0) texture coatings exhibit coarse oxide morphologies with crater or some breakage existed; while the (2 2 0) texture coating shows dense, molten oxide morphology. The main ablation behaviors of the hybrid, (2 0 0) and (2 2 0) texture TaC coatings are oxidation and particle denudation and block denudation, oxidation and block denudation, oxidation and mechanical erosion and block denudation, respectively.  相似文献   

9.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

10.
This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 1015 Al/cm2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 1015 Al/cm2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni3Al “interfacial” layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L12 Ni3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the surface. The atomic diffusion is very limited in the NiAl phase that forms, and thus the progressive enrichment in Ni of the Al film, i.e. of the mean Ni concentration, becomes slower and slower. As a consequence, alloying is observed to take place in a very broad temperature range between 300 K and 700 K. For annealing temperatures above 800 K, the alloyed layer is decomposed, Al atoms diffusing in the bulk of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号