首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by OH radicals produced from cavitation bubbles (either in the bubble–bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble–liquid interfacial region. With the methodology of coupling experiments under different conditions (which alter the nature of the cavitation phenomena in the bulk liquid medium) with the simulations of radial motion of cavitation bubbles, we have tried to discern the relative contribution of each of the above pathway to overall degradation of the pollutant. Moreover, we have also tried to correlate the predominant degradation mechanism to the physico-chemical properties of the pollutant. The contribution of secondary factors such as probability of radical–pollutant interaction and extent of radical scavenging (or conservation) in the medium has also been identified. Simultaneous analysis of the trends in degradation with different experimental techniques and simulation results reveals interesting mechanistic features of sonochemical degradation of the model pollutants. The physical properties that determine the predominant degradation pathway are vapor pressure, solubility and hydrophobicity. Degradation of Ph occurs mainly by hydroxylation in bulk medium; degradation of CB occurs via thermal decomposition inside the bubble, degradation of PNP occurs via pyrolytic decomposition at bubble interface, while hydroxylation at bubble interface contributes to degradation of NB and 2,4-DCP.  相似文献   

2.
灭多威的超声降解研究   总被引:12,自引:0,他引:12       下载免费PDF全文
研究了灭多威模拟废水在超声作用下的降解反应动力学、降解产物、降解途径、以及影响降解速率的因素等问题.结果表明,灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢;Fe  相似文献   

3.
We studied sonochemical reactions resulting from ultrasonic treatment of potassium hexacyanoferrate(II) in aqueous solutions using a custom-built apparatus working at 536 kHz. We concluded that primary reactions are completely dominated by oxidation of Fe(II) to Fe(III) and did not find any evidences for degradation of cyanide. At the highest concentration used in the present study (0.1 M) we detected formation of pentacyanoaquaferrate(II) complex, which is most probably formed in reactions between hexacyanoferrate(III) anions and hydrogen atoms or hydrated electrons formed in sonochemical processes. We also determined that hydroxyl radicals formation rate in our system, (8.7 ± 1.5)∙10−8 M∙s−1, is relatively high compared to other reported experiments. We attribute this to focusing of the ultrasonic wave in the sample vessel. Finally, we suggest that oxidation rate of hexacyanoferrate(II) anions can be a convenient benchmark of efficiency of sonochemical reactors.  相似文献   

4.
Nanocrystalline mercury chalcogenides HgE (E = S, Se, Te) were synthesized in a single step by a convenient, simple sonochemical method. Mercury nitrate, Hg(NO3)2, dissolved in 0.1 M ethylenediamine tetraacetic acid (EDTA), was used as the source of mercury and elemental chalcogenes, dissolved in a NaOH solution, as the sources of chalcogenide. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDAX). The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. The results showed that the complexing agent EDTA plays a crucial role in the process.  相似文献   

5.
Sonolytic degradation of hazardous organic compounds in aqueous solution   总被引:16,自引:0,他引:16  
Benzene, chlorobenzene, 1,2-, 1,3-, 1,4-dichlorobenzene, biphenyl, and polychlorinated biphenyls such as 2-, 4-chlorobiphenyl and 2,2′-dichlorobiphenyl in aqueous solutions have been subjected to sonolysis with 200 kHz ultrasound at an intensity of 6 W cm−2 under an argon atmosphere. 80–90% of initial amount of these compounds were degraded by 30–60 min of sonication when the initial concentrations were 10–100 μmol l−1. The degradation rate of these compounds increased with increase in their vapor pressures. In all cases of sonolysis of chlorinated organic compounds, an appreciable amount of liberated chloride ion was observed.  相似文献   

6.
The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850 kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26 g/L Na2SO4 and 30 V electrical voltages at 25 °C in 1 h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.  相似文献   

7.
Acoustic cavitation, induced by ultrasound, can be used to eliminate organic pollutants from water. This type of ultrasonic treatment of polluted water can be grouped with those generally referred to as advanced oxidative processes since it involves hydroxyl radicals. In this case these highly active species are generated from the dissociation of water and oxygen dissociation caused by cavitation bubble collapse. The cavitation induced degradation rates of organic compounds in water are mainly linked to their vapor pressure and solubility and here we will further explore these links by examining the degradation of a mixture of two materials with different physical properties, chlorobenzene and 4-chlorophenol. The results obtained when a dilute solution of a mixture of these compounds saturated with argon is subjected to sonication at 300 kHz, parallels previous observations achieved in an aerated aqueous medium at 500 kHz. The two compounds exhibit sequential degradation with the more volatile chlorobenzene entering the cavitation bubble and being destroyed first. The 4-chlorophenol degradation occurs subsequently only when the chlorobenzene has been completely destroyed. The two compounds exhibit different behavior when sonicated in water saturated with oxygen. Under these conditions the two compounds are degraded simultaneously, a remarkable result for which two explanations can be proposed, both of which are based on the formation of additional OH radical species: The ability to produce conditions for the simultaneous elimination of two organic compounds by the use of oxygen is of great importance in the developing field of ultrasonic water treatment.  相似文献   

8.
In this paper we review some of our recent applications of the EPR spin trapping technique to sonochemical studies which include identification of radicals formed in organic liquids and aqueous mixtures of organic liquids, estimation of temperatures of sonochemical regions in mixtures of deuterated and non-deuterated solvents, and the identification of reactive radical intermediates which may play a role in synergistic cell killing by ultrasound and drugs (sonodynamic interactions).  相似文献   

9.
Sonochemical degradation of aqueous polycyclic aromatic hydrocarbons (PAHs) was found to be rapid in the absence of other dissolved compounds (k = 0.006-0.015 s-1). In the presence of 20 mg Cl-1 fulvic acid, first-order PAH degradation rate constants decreased from 2.3- to 3.7-fold. Similar results were obtained with added benzoic acid, a crude analog for fulvic acid. In natural waters, PAH degradation was almost completely inhibited. Analysis of the kinetic behavior and reaction products indicates that PAHs are most likely degraded through a radical cation mechanism. Hydroxyl radical appeared to play an insignificant role in the degradation. Inhibited degradation was probably the result of either altered cavitation processes or isolation of the PAH away from cavitation sites.  相似文献   

10.
In this review the phenomenon of ultrasonic cavitation and associated sonochemistry is presented through system parameters. Primary parameters are defined and considered, namely; pressure amplitude, frequency and reactor design; including transducer type, signal type, vessel-transducer ratio, liquid flow, liquid height, liquid temperature and the presence of a reflective plate. Secondary parameters are similarly characterised and involve the use of gas and liquid additives to influence the chemical and physical environments. Each of the parameters are considered in terms of their effect on bubble characteristics and subsequent impact on sonochemical activity. Evidence suggests that via parametric variation, the reaction products and efficiency may be controlled. This is hypothesised to occur through manipulation of the structural stability of the bubble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号