首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

2.
Titania nanoparticles were obtained by an ultrasonic assistant sol-gel method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermal analysis. The optical absorption of the samples has been measured by photoacoustic (PA) spectroscopy, which is powerful for detecting small amount of strongly scattering materials. The structural variations of the sample during the phase transitions were firstly studied using Nd3+ as an absorption spectral probe. The PA results show that the TiO2 gel heated at 50 °C is basically amorphous and still contains abundant trapped water and ethanol, which makes the environment around Nd3+ similar with that of its aqueous ion. For the sample calcined at higher temperature, the f-f transitions of Nd3+ exhibit a continuous red shift along with the gel-to-anatase transformation, indicating an increase of the “degree of covalency” for Nd3+ bonding. For the sample calcined at 1100 °C, however, the f-f transitions of Nd3+ show blue shifts and the hypersensitive transition intensities of Nd3+ decrease, indicating an increase of ionicity for Nd3+ bonding. This can be attributed to the segregation of Nd3+ ions to the external surface, forming Nd4Ti9O24 during the anatase-to-rutile transition.  相似文献   

3.
Nanocrystalline SnO2:Sb films were prepared by a sol-gel route using C6H8O7-triethanolamine (TEA) mixing aqueous solution with pH 6.5-7.0. Stannous oxalate and antimony trichloride were used as tin and antimony sources. IR, XRD FESEM, FETEM, UV-vis and four-point probe measurement were used to characterize sol-gel chemistry, structure, morphologies, optical and electrical properties. Mechanism of sol-gel reaction illuminated that existence of TEA supplied large numbers of active tin hydrate and ionized state carboxyl groups for tin and antimony chelation through the amido association with the ionized H+ on -COOH of H3L and H2C2O4. The 6 at.% Sb-doped films with film thickness of 600 nm had sheet resistance as low as 42.85 Ω/ when annealed at 450 °C for 10 min. Annealing temperature intensively altered sheet resistance and optimum was in the range of 450-500 °C. The longer annealing time caused Sb volatilization which led to the optimum doping level shifted from 6 to 12 at.%.  相似文献   

4.
VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 °C) and hard (50% H2O2, 350 °C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.  相似文献   

5.
Glass ceramics of the composition xZnO·25Fe2O3·(40−x)SiO2·25CaO·7P2O5·3Na2O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 °C for 3 h and then rapidly cooled at −10 °C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe2O4, CaSiO3 and Ca10(PO4)6(OH)2. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe2O4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe2O4 exhibited ferrimagnetism due to the random distribution of Zn2+ and Fe3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe2O4 and rapid cooling of the material from 1100 °C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 °C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.  相似文献   

6.
Using H3BO3 as the flux, pure BaMgAl10O17:Eu2+ (BAM) blue phosphors were successfully prepared via a solid-state reaction. By this approach, well-crystallized submicron BAM particles were obtained at temperatures as low as 1100 °C with a sintering duration of 2 h. The sintering temperature required by this approach was at least 400 °C lower than that required by the conventional solid-state approach for preparing BAM; moreover, the sintering time required by the former approach was also considerably shorter than that required by the latter approach. These factors are expected to lower the cost for large-scale production of BAM phosphors. Crystal structures and luminescence properties of the synthesized samples were characterized by XRD and TG–DTA, and photoluminescence spectroscopy, respectively. The reactivity of an intermediate, BaAl2O4, is thought to be the key factor influencing the synthesis temperature for BAM.  相似文献   

7.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

8.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

9.
Aligned straight silica nanowires (NWs) have been synthesized on Si wafer by thermal evaporation of mixed powders of zinc carbonate hydroxide and graphite at 1100 °C and condensation on Si substrate without using any catalyst. The straight silica NWs have diameters ranging from 50 to 100 nm, and lengths of several micrometers, with cone-shaped tips at their ends. High deposition temperature and relatively high SiOx vapor concentration near the growth substrate would be beneficial to the formation of the aligned straight silica NWs. Different morphologies of silica nanostructures have also been obtained by varying the deposition temperature and the vapor concentration of the SiOx molecules. Room temperature photoluminescence measurements on the oriented silica NWs show that two green emission bands at 510 and 560 nm, respectively, revealing that the aligned straight silica NWs might have potential applications in the future optoelectronic devices.  相似文献   

10.
The magnetic properties of 1.5 at% Fe-doped NiO bulk samples were investigated. The samples were prepared by sintering the corresponding precursor in air at temperatures between 400 and 800 °C for 6 h. The synthesis was by a chemical co-precipitation and post-thermal decomposition method. In order to allow a comparison, a NiO/0.76 at% NiFe2O4 mixture was also prepared. The X-ray diffraction pattern shows that the samples that were sintered at 400 and 600 °C remain single phase. As the sintering temperature increased to 800 °C, however, the sample becomes a mixture of NiO and NiFe2O4 ferrite phases. The samples were investigated by measuring their magnetization as a function of magnetic field. The samples sintered between 400 and 800 °C and the one mixed directly with NiFe2O4 nanoparticles show a coercivity value of Hc≈200, 325, 350 and 110 Oe, respectively. The magnetic properties of the samples depend strongly on the sintering temperature. Simultaneously, the field-cooling hysteresis loop shift also observed after cooling the sample sintered at 600 °C to low temperature suggests the possibility of the existence of a ferromagnetic/antiferromagnetic exchange coupling.  相似文献   

11.
The paper reports on thermal stability of alumina thin films containing γ-Al2O3 phase and its conversion to a thermodynamically stable α-Al2O3 phase during a post-deposition equilibrium thermal annealing. The films were prepared by reactive magnetron sputtering and subsequently post-deposition annealing was carried out in air at temperatures ranging from 700 °C to 1150 °C and annealing times up to 5 h using a thermogravimetric system. The evolution of the structure was investigated by means of X-ray diffraction after cooling down of the films. It was found that (1) the nanocrystalline γ-Al2O3 phase in the films is thermally stable up to 1000 °C even after 5 h of annealing, (2) the nanocrystalline θ-Al2O3 phase was observed in a narrow time and temperature region at ≥1050 °C, and (3) annealing at 1100 °C for 2 h resulted in a dominance of the α-Al2O3 phase only in the films with a sufficient thickness.  相似文献   

12.
The luminescence properties of LaNbO4 synthesized by the citric gel process were investigated. The crystallized orthorhombic and monoclinic biphasic structure forms at temperatures below 1100 °C and well-crystallized monoclinic LaNbO4 is obtained by heat treatment at a temperature of 1200 °C for 3 h. All of LaNbO4 phosphors derived from the citric gel method exhibit red-shifted excitation spectra as the calcining temperature increased from 700 to 1200 °C. The effect of the heat treatment conditions on the peak shape and the peak positions of the photoluminescence (PL) emission are undetectable, and the PL spectra excited at 260 nm have a blue emission band maximum at 408 nm, corresponding to the self-activated luminescence center of LaNbO4. The sample heat treated at 1100 °C for 3 h showed the highest absorption and fluorescence intensities among the prepared samples.  相似文献   

13.
Co2Z hexaferrite Ba3Co2Fe24O41 was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 °C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 °C and the Y-type ferrite at 1230 °C. The Z-type material has its stability interval between 1300 and 1350 °C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 °C, intermediate grinding and sintering at 1330 °C. The permeability of Co2Z-type ferrite of about μ=20 is stable up to several 100 MHz, with maximum losses μ′′ around 700 MHz. Addition of 3 wt% Bi2O3 as sintering aid shifts the temperature of maximum shrinkage down to 950 °C and enables sintering of Z-type ferrite powders at 950 °C. However, the permeability is reduced to μ=3. It is shown here for the first time that Co2Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co2Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 °C.  相似文献   

14.
Antimony-doped tin oxide (SnO2:Sb) single crystalline films have been prepared on α-Al2O3 (0 0 0 1) substrates by metal organic chemical vapor deposition (MOCVD). The antimony doping was varied from 2% to 7% (atomic ratio). Post-deposition annealing of the SnO2:Sb films was carried out at 700-1100 °C for 30 min in atmosphere ambient. The effect of annealing on the structural, electrical and optical properties of the films was investigated in detail. All the SnO2:Sb films had good thermal stability under 900 °C, and the 5% Sb-doped SnO2 film exhibited the best opto-electrical properties. Annealed above 900 °C, the 7% Sb-doped SnO2 film still kept high thermal stability and showed good electrical and optical properties even at 1100 °C.  相似文献   

15.
The surface of β-Ga2O3 (1 0 0) single crystal grown with floating zone method was treated by chemical-mechanical-polishing (CMP) for 30-120 min followed by annealing in oxygen atmosphere at temperature 600-1100 °C for 3-6 h. The evolution of the step arrangement was investigated with reflection high energy electron diffraction and atomic force microscopy. Atomically smooth surfaces with atomic step and terrace structure of β-Ga2O3 substrates were successfully obtained after just CMP treatment as well as CMP treatment and post annealing at 1100 °C for 3 h. The uniform step height was 0.57 nm, and smooth terrace width was 100 nm, where the misorientation angle was about 0.36°. The obtained atomically smooth surface provides a potential application for the high-quality epitaxial film growth.  相似文献   

16.
In this work, the interaction between hydrogen peroxide (H2O2) and a gradient structured Ti was investigated extensively. The gradient structured Ti (SMAT Ti) was produced by surface mechanical attrition treatment (SMAT), and then it was immersed in H2O2 solution for different time until 48 h at room temperature (25 °C). The structure and surface morphology evolution were examined by Raman spectra and scanning electron microscopy (SEM). The formation mechanism of nanoporous titania was discussed based on above results.  相似文献   

17.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

18.
The nanobaskets of SnO2 were grown on in-house fabricated anodized aluminum oxide pores of 80 nm diameter using plasma enhanced chemical vapor deposition at an RF power of 60 W. Hydrated stannic chloride was used as a precursor and O2 (20 sccm) as a reactant gas. The deposition was carried out from 350 to 500 °C at a pressure of 0.2 Torr for 15 min each. Deposition at 450 °C results in highly crystalline film with basket like (nanosized) structure. Further increase in the growth temperature (500 °C) results in the deterioration of the basket like structure and collapse of the alumina pores. The grown film is of tetragonal rutile structure grown along the [1 1 0] direction. The change in the film composition and bonded states with growth temperature was evident by the changes in the photoelectron peak intensities of the various constituents. In case of the film grown at 450 °C, Sn 3d5/2 is found built up of Sn4+ and O-Sn4+ and the peaks corresponding to Sn2+ and O-Sn2+ were not detected.  相似文献   

19.
Water is one of the most affecting chemicals that can cause damage to the solid surface. To protect the surface due to the action of water, the surface should be made hydrophobic. In the present study, the improvement in hydrophobicity of silica films using metal acetylacetonate (M-acac) by employing heat treatment to methyltrimethoxy silane (MTMS) based silica coatings is reported as a novel attempt. Instead of following the established trends of the surface derivatization or co-precursor method, iron acetylacetonate Fe(acac)3, copper acetylacetonate Cu(acac)2 and heat treatment were used to incorporate hydrophobicity with silica coatings. As M-acac is readily soluble in organic solvents, Fe(acac)3 and Cu(acac)2 were dissolved in methanol (MeOH) and their concentration was varied from 0 to 0.025 M. The coating solution was prepared by optimizing molar ratio of MTMS:MeOH:basic H2O to 1:7.15:6.34, respectively. Gelation time (tg) for Cu(acac)2 containing silica sol and that containing Fe(acac)3 were noted to be 30 and 55 min, respectively. The substrates were taken out after gelation and heat treated at 150 °C for 2 h. The heat treated films showed a dramatic increase in the static water contact angle from 82° to as high as 142°.  相似文献   

20.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号