首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Vinyltriethoxysilane (VTES) was grafted onto natural rubber (NR) in latex form, using potassium persulfate (KPS) as initiator. The VTES grafted NR (NR-g-VTES) was then further reinforced with graphene oxide (GO) by a mechanical mixing method with different GO loadings to get the rubber composite (GO/NR-g-VTES). The NR-g-VTES was characterized and confirmed by attenuated total teflectance-Fourier transforms infrared spectroscopy (ATR-FTIR). The effect of GO content on the curing characteristics and resulting mechanical properties of the GO/NR-g-VTES were studied and compared with neat NR filled with GO (NR/GO). The maximum and minimum torque and the tensile and tear strength of the NR-g-VTES/GO composites were higher than that of NR/GO. The samples containing low GO concentration showed maximum torque and tensile and tear strength. Dynamic mechanical analysis showed that the interaction between GO and NR-g-VTES was better than that of the GO-reinforced NR.  相似文献   

2.
A blend/clay nanocomposites of 50/50 (wt%) NR/SBR was prepared via mixing the latex of a 50/50 NR/SBR blend with an aqueous clay dispersion and co‐coagulating the mixture. The structure of the nanocomposite was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Nanocomposites containing less than 10 phr clay showed a fully exfoliated structure. After increasing the clay content to 10 phr, both nonexfoliated (stacked layers) and exfoliated structures were observed in the nanocomposites. The results of mechanical tests showed that the nanocomposites presented better mechanical properties than clay‐free NR/SBR blend vulcanizate. Furthermore, tensile strength, tensile strain at break, and hardness (shore A) increased with increasing clay content, up to 6 phr, and then remained almost constant.  相似文献   

3.
In this study, nanocomposites of natural rubber (NR) and polystyrene (PS)-encapsulated nanosilica were prepared by latex compounding method. The nanolatex of PS-encapsulated silica was synthesized via in situ differential microemulsion polymerization. The resulted hybrid nanoparticles showed core-shell morphology with an average diameter of 40 nm. The silica hybrid nanoparticles were subsequently used as filler for the NR nanocomposite. The properties of NR were found to be improved as a result of the incorporation of PS-encapsulated nanosilica at 3 and 3-9 parts per hundred rubber (phr) for tensile strength and modulus at 300% strain, respectively, except the elongation at break, and up to 9 phr for flammability. The results from dynamic mechanical analyzer showed that the elastic properties of NR near the glass transition temperature increased with the inclusion of increasing concentration of the PS-encapsulated nanosilica, causing by the semi-interpenetrating nanostructure in the NR nanocomposites.  相似文献   

4.
Carbon black (CB) filled powdered natural rubber [P(NR/N234)] was prepared using a patented method of latex/CB coagulation technology. The influence of curing recipes and CB contents on the curing, mechanical, and dynamic properties were studied in depth, and the results were compared with that of NR/N234 compounds based on traditional dry mixing of bale NR and CB. The results showed that, compared with NR/N234, P(NR/N234) showed higher tensile strength, tear strength, rebound elasticity and flexibilities, and the antiabrasion properties were similar, while the dynamic temperature-build-up and dynamic compression permanent set were about 50% of that of NR/N234. The analysis based on scanning electron micrographs (SEM) and the Payne effect showed that the fine dispersion of CB in the rubber and the enhanced interaction between CB and rubber contributed to the excellent properties of P(NR/N234), sufficient that they make P(NR/N234) a potential material for the tread compounds of heavy-duty all-steel cord radial tires.  相似文献   

5.
《Composite Interfaces》2013,20(6):571-583
Carboxylated nitrile butadiene rubber (XNBR)–based nanocomposites with varying amounts of nanokaolin were produced by latex stage mixing. Sonication of the unmodified kaolin and the technique adopted for the preparation of the composite have helped to get a uniform dispersion of clay in XNBR matrix. Nanokaolin caused enhancement in the mechanical properties of the composites. Proper dispersion of the clay particles, partial exfoliation/intercalation of clay, and interaction of clay with the polar rubber latex made nanokaolin good reinforcing filler in XNBR latex. Swelling studies conducted in methyl ethyl ketone showed a decrease in the swelling index and solvent uptake confirming the hindrance exerted by clay and the possible clay–rubber interaction. Increase in complex modulus obtained from the strain sweep analysis is a further evidence for better rubber filler interaction. The composites were characterized by the scanning electron microscopy, X-ray diffraction analysis, and atomic force microscopy.  相似文献   

6.
《Composite Interfaces》2013,20(5-6):409-425
In this study, octadecylamine modified MMT (C18-MMT) filled SBR nanocomposites were manufactured using a latex method and a compounding method. Cure characteristics and mechanical properties of SBR compounds filled with C18-MMT, Cloisite 15A, carbon black and Na-MMT were also evaluated. By using the latex method, the number of layers of the silicates in the SBR matrix reduced from the original 14–15 layers to 1–4 layers. This was due to the presence of octadecyl ammonium ions which reduced the number of layers of the re-aggregated silicates during the process of co-coagulation. The SBR/C18-MMT nanocomposites using the latex method showed the highest oscillating disc rheometer (ODR) torques, tensile strength, modulus and tear energy. These increased mechanical properties can be attributed to the excellent reinforcing effect of the silicates well dispersed in the rubber matrix rather than the effect of the increase in the degree of crosslinking. Without alkyl ammonium ions in the latex method, the level of dispersion of silicates in the SBR matrix was very poor. The SBR/C18-MMT nanocomposites using the compounding method were found to have a lower degree of modulus, tensile strength and tear energy due to the low level of the dispersion of silicates than the SBR/C18-MMT nanocomposites using the latex method.  相似文献   

7.
Using the characteristics of silica sol dispersing well in water and easy formation of silica gel when the silica sol is heated, by mixing a system of concentrated natural rubber latex and silica sol, the silica sol can in-situ generate SiO2 particles when heated. After coagulation of the mixed system, natural rubber/nanosilica composites C(NR/nSiO2) were obtained. The composites C(NR/nSiO2) and their vulcanizates were studied using a rubber processing analyzer (RPA), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The influence of silica contents on the C(NR/nSiO2) vulcanizates mechanical properties, cross-linking degree, Payne effect, dissipation factor (tanδ), and the particle size and dispersion of SiO2 in NR were investigated. The results obtained were compared with the NR/SiO2 composites based on traditional dry mixing of bale natural rubber and precipitated silica (white carbon black). The results showed that when using a sulfur curing system with a silica coupling agent (Si69) in C(NR/nSiO2), the vulcanizate had better mechanical properties, higher wet resistance, and lower rolling resistance than those without Si69. In the composites C(NR/nSiO2) and their vulcanizates, the SiO2 particles’ average grain diameter was 60 nm, and the good-dispersion of the in-situ generated SiO2 in the rubber matrix were a significant contribution to the satisfactory properties of C(NR/nSiO2) composites and their vulcanizates.  相似文献   

8.
This work describes the synthesis of GO, rGO and their nanocomposites with PEO. GO and rGO were prepared by the modified Hummers method and in-situ reduction of GO utilizing green reductant L (+) Ascorbic acid. The nanocomposites were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Thermogravimetric Analysis (TGA), and Universal Testing Machine (UTM). FT-IR and XRD confirmed the synthesis of GO and rGO. FE-SEM confirmed the uniformly exfoliated GO and rGO nanosheets in the polymer matrix. Hydrogen bonding was the main interaction mechanism for GO with PEO while no interaction was detected by FT-IR for rGO. Enhanced thermal stability was observed for both GO/PEO and rGO/PEO nanocomposites. The mechanical analysis showed an increase in Young's modulus, tensile strength, and elongation at break for GO/PEO nanocomposites, which is attributed to the homogeneous dispersion and hydrophilic hydrogen bonding interaction of GO with PEO.  相似文献   

9.
《Composite Interfaces》2013,20(2-3):193-205
To improve the interfacial interaction in clay/SBR nanocomposites prepared by latex compounding method, a novel clay modification for the nanocomposites was introduced before latex compounding with SBR using three kinds of organic modifiers, namely, hexadecyl trimethyl ammonium bromide (C16), bis(hexadecyl) dimethyl ammonium bromide (DC16) and 3-aminopropyl triethoxy silane (KH550). On the other hand, bis(triethoxysilylpropyl)tetrasulfide (Si69) was added into the KH550 modified clay/SBR nanocomposite during later mechanical blending, and was designed to interact with both KH550 and rubber and thus improve the interface. Structure changes of the nanocomposites were followed by study of X-ray diffraction, transmission electron microscopy and rubber process analyzer. Dynamic mechanical analysis and tensile tests were carried out to obtain information about the mechanical properties of the nanocomposites. The results revealed that, with the organic modification, clay was dispersed finely in the rubber matrix with part rubber-intercalated or part modifier-intercalated structure. Compared with the unmodified nanocomposite, the tensile strength, the stress at 300% strain, and the tear strength of modified SBR–clay nanocomposites were significantly improved. Moreover, the type of modifiers and strength of interfacial interaction determined the properties of the nanocomposites. The incorporation of KH550 and Si69 brought the best modification effect among all the modification methods.  相似文献   

10.
An improved process was developed for the production of carbon black (CB)–filled styrene butadiene rubber masterbatch (SBR-CB-MB) using a simple latex/CB mixing technology; the improvement comprised processing the CB as an emulsifier-free aqueous suspension by high-rate shearing. Tensile and tear strength, dynamic compression behaviors, the Payne effect, equilibrium swelling and bound rubber of the SBR-CB-MB and dry mixing CB filled SBR (SBR-CB-DM), covering a wide range of CB loading (45–70 phr), were investigated and compared. It was found that the tensile and tear strength, heat buildup and compression set, abrasion volume loss, and the Payne effect of the SBR-CB-MB were lower than those of the SBR-CB-DM, while the bound rubber content were higher, indicating good CB/rubber interaction in the SBR-CB-MB. SEM analysis showed that no free CB could be found on the surface or inside of the granular SBR-CB-MB particles, indicating good CB dispersion in the rubber matrix.  相似文献   

11.
The effectiveness of maleic anhydride grafted ethylene propylene diene monomer rubber (EPDM-g-MAH) as an interfacial compatibilizer in enhancing the extent of interaction between natural rubber (NR) matrix and organoclay (OC) nanolayers, and also the eventually developed microstructure during a melt mixing process, has been evaluated as an alternative material to be used in place of commonly used epoxidized NR with 50 mol % epoxidation (ENR50). The latter usually weakens the processability of the final compound. The curing behavior, rheological, and dynamic mechanical properties of the prepared nanocomposites have been evaluated. Microstructural characterizations revealed better interfacial compatibilization by EPDM-g-MAH than ENR50, which is attributed to the lower polarity of the EPDM-g-MAH and hence more affinity for the NR matrix to be diffused onto the galleries of OC. This was confirmed with transmission electron microscopy (TEM) examination and higher elasticity exhibited by the unvulcanized NR/OC/EPDM-g-MAH nanocomposites in melt rheological measurements. Also, lower damping behavior was observed for the vulcanized NR/OC/EPDM-g-MAH samples. These imply intensified polymer–filler interfacial interaction and hence restricted viscous motions by the NR segments. Vulcanized NR/OC nanocomposites compatibilized with EPDM-g-MAH showed greater enhancements in tensile properties than the sample compatibilized with ENR50.  相似文献   

12.
Abstract

Butyl rubber (IIR)/hydrophobically modified graphene oxide (GO) (HG) nanocomposites were prepared via shear-induced compounding. Hydrophilic GO was synthesized through the chemical oxidation of graphite (GP) and modified hydrophobically by octadecylamine which has a hydrophobic long alkyl chain. The obtained HG was characterized by Fourier transform infrared and wide-angle X-ray diffraction (WAXD) patterns. It was well dispersed in toluene for more than 30 days under stationary condition. The IIR/HG nanocomposites were prepared by the shear mixing process and followed by thermal vulcanization process through compression molding. Their properties were studied using oscillating disk rheometer, universal testing machine, differential scanning calorimetry, thermogravimetric analysis, WAXD patterns, and scanning electron microscope analysis. The hydrophobic HG was dispersed at the nanoscale within IIR matrix, and the resulting nanocomposites had significantly reduced curing time. The overall tensile properties were enhanced.  相似文献   

13.
ABSTRACT

The demands of the usage of hazardous ingredients for sulfur curing system in latex industries decrease with an increase in health-conscious and environmental awareness. This work demonstrates the incorporation of cassava starch (CS) as biodegradable fillers with natural rubber latex (NRL) through a sulfur-free crosslinking technique using radiation pre-vulcanization natural rubber latex (RVNRL) in comparison to sulfur pre-vulcanized natural rubber latex (PvNRL). The 20% CS dispersion was prepared, and 5–25?phr of dispersed CS content were compounded with NRL and formed into films by the coagulant dipping method. Microstructures and crystallinity of the films were analyzed by scanning electron microscopy (SEM) and X-ray diffraction, and their mechanical properties of NRL/CS films were characterized by tensile and tear tests. The result revealed that the crystallinity of RVNRL films was lower than PvNRL films. The total bond of S?C from PvNRL contributes to high tensile strength compared to C?C intermolecular rubber bond from radiation vulcanization system. The trend of decrement of tensile properties from sulfur crosslinking was larger than radiation crosslinking, and both systems gave similar tensile behavior at 25?phr of CS content. This attributed to the better dispersion of CS in RVNRL as confirmed by SEM micrographs. It was found that the optimum tear strength of RVNRL/CS and PvNRL/CS films was obtained at 10 and 5?phr of filler content, respectively. The result presented in this study may facilitate a contribution to the current literature on the development of latex film by radiation pre-vulcanization for rubber industry in the future.  相似文献   

14.
A novel strategy of radical polymerization of sodium 4-styrenesulfonate on the surface of carbon black (CB) in the solid state was developed to prepare hydrophilic carbon nanoparticles (PNASS-CB). A high performance natural rubber latex (NRL)/PNASS-CB composite was produced by the latex compounding technique. Scanning electron microscope shows considerable improvement in the dispersion of PNASS-CB in rubber matrix. The lower degree of filler–filler networks and the stronger filler–rubber interaction of PNASS-CB in rubber matrix were confirmed by dynamic mechanical thermal analysis. Rheometric properties of NRL/PNASS-CB, like scorch time and optimum cure time, decreased. Tensile strength, tear strength, and elongation at break increased due to stronger interaction between the PNASS-CB and rubber matrix. Dynamic mechanical properties of the modified carbon nanoparticles further corroborated a significant contribution from the better dispersion and efficient load transfer of PNASS-CB on the static and dynamic mechanical properties of composites.  相似文献   

15.
A series of organically modified montmorillonite (OMMT)/nitrile rubber (NBR) nanocomposites were prepared by a simple mechanical-mixing method. The structures of OMMT and the dispersion of OMMT in the rubber matrix were detected by X-ray diffraction (XRD). The mechanical properties of the NBR/OMMT nanocomposites were characterized, and the tribological behaviors of the nanocomposites were evaluated on a ring-block (MRH-3) wear tester. The results showed that the OMMT was homogeneously dispersed in the NBR matrix. The tensile strength of the OMMT/NBR nanocomposites increased with increasing OMMT contents. Both the coefficient of friction (COF) and wear of the nanocomposites decreased remarkably with increasing OMMT content. In addition, the influence of the applied load on the tribological properties of the nanocomposites is discussed. It is expected that the research may be of aid in the rational design and use of solid, self-lubricating nanocomposites under different loading states.  相似文献   

16.
PVDF/nanoclay nanocomposites were prepared via melt mixing method. The intercalated dispersion of the nanoclay in PVDF matrix was confirmed by XRD. According to FTIR, DSC and XRD results, the presence of nanoclay facilitated transition from α-to-β crystalline phase. Electron beam irradiation decreased the melting point of the nanocomposites. The decrease in melting point of the nanocomposites was about 11 °C at 500 kGy. The crystallinity of nanocomposites increased at an irradiation dose of 100 kGy and decreased at higher irradiation doses. The extent of crosslinking of the nanocomposites increased significantly with irradiation up to 300 kGy. The nanoclay intensified the increase in yield strength with irradiation doses up to 300 kGy. The combination of nanoclay and irradiation had a synergistic effect on the increase of yield strength.  相似文献   

17.
Poly(vinyl pyrrolidone) (PVP)/reduced graphene oxide (RGO) nanocomposites were synthesized by reducing graphene oxide in the polymer matrix at different temperatures. The effects of the GO content on the properties of the nanocomposites were investigated by Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The degree of dispersion of GO in the PVP matrix was examined by field-emission scanning electron microscopy. The results showed that both GO and RGO were well dispersed in the PVP matrix. Under low filler content, the improvement of onset decomposition temperatures of PVP nanocomposites was not obviously observed, but the amounts of residual char of the PVP nanocomposites were clearly increased. In addition, the decomposition temperature peak values of the PVP nanocomposites were increased, while the peak was broadened.  相似文献   

18.
The dynamic fatigue behaviors of natural rubber (NR) filled with carbon black (CB) and both nanoclay (NC) and CB at same hardness was evaluated using the stepwise increasing strain test (SIST) and long-term testing. Compared with NR/CB composites, NR/CB/NC nanocomposites exhibited higher fatigue-limited strain, stronger dynamic stress relaxation, and longer compression fatigue life. By examining the fracture morphologies, nonlinear viscoelastic behavior, and hysteresis loss of filled NR, it was found that NR, synergisticly reinforced by NC and CB, exhibited improved anti-fatigue ability than NR filled with CB due to stronger filler–filler interactions between NC and CB (a local filler network) and the high aspect ratio and typical lamellar structure of NC.  相似文献   

19.
《Composite Interfaces》2013,20(4-6):337-346
One approach to improve the impact strength of acrylonitrile–butadiene–styrene (ABS)/clay nanocomposites is to increase rubber content. To investigate the effect of the rubber content of ABS on the mechanical properties of the ABS/clay nanocomposites, other parameters were fixed and ABS/clay nanocomposites containing various rubber contents were prepared in this study. Also the effect of the UV stabilizer on the mechanical properties of ABS/clay nanocomposite was studied. For addition of 3 wt% clay, ABS nanocomposite with 35 wt% content of rubber displayed the highest reinforcement ratio for tensile properties and impact strength.  相似文献   

20.
Elastomer nanocomposites were prepared by mixing carbon nanofiber (CNF) decorated with metal nanoparticles (CNF–Fe2O3) with latex. The Fe2O3 metal nanoparticles were decorated on the CNF by electrostatic attraction via a green and facile solution-based method. The presence of the metal nanoparticles on the surface of the CNF improved their dispersion and electric contact resistance in the elastomer matrix. Interestingly, the CNF–Fe2O3/elastomer composite exhibited improvements in both tensile strength and elongation (carbon black/elastomer), by as much as 9.7 and 28.9%, respectively, compared to an elastomer control without filler. Also, the CNF–Fe2O3/elastomer exhibited superior thermal and electrical conductivity compared with the control. In an applied magnetic field the elastomer nanocomposites showed a significant transition from dominant diamagnetism to ferromagnetism due to synergies between the Fe2O3 nanoparticles and the CNF. The elastomer nanocomposites prepared with CNF–Fe2O3 will open significant new opportunities for preparing advanced elastomer nanocomposites for future engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号