首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was performed in which a noise containing frequencies from 10 Hz to 47 Hz was used to mask speech. The behaviour of speech intelligibility with speech presentation level and masking noise level was examined briefly.The infrasonic and low frequency masking noise did reduce the intelligibility of speech. The effect only became significant when the masking noise level was present at levels of 115 dB OASPL or above.  相似文献   

2.
Recent results have shown that listeners attending to the quieter of two speech signals in one ear (the target ear) are highly susceptible to interference from normal or time-reversed speech signals presented in the unattended ear. However, speech-shaped noise signals have little impact on the segregation of speech in the opposite ear. This suggests that there is a fundamental difference between the across-ear interference effects of speech and nonspeech signals. In this experiment, the intelligibility and contralateral-ear masking characteristics of three synthetic speech signals with parametrically adjustable speech-like properties were examined: (1) a modulated noise-band (MNB) speech signal composed of fixed-frequency bands of envelope-modulated noise; (2) a modulated sine-band (MSB) speech signal composed of fixed-frequency amplitude-modulated sinewaves; and (3) a "sinewave speech" signal composed of sine waves tracking the first four formants of speech. In all three cases, a systematic decrease in performance in the two-talker target-ear listening task was found as the number of bands in the contralateral speech-like masker increased. These results suggest that speech-like fluctuations in the spectral envelope of a signal play an important role in determining the amount of across-ear interference that a signal will produce in a dichotic cocktail-party listening task.  相似文献   

3.
In the many studies done on informational masking, interfering speech reduces speech intelligibility. This effect is often used to secure privacy in public spaces. These applications require estimates of how much masking is required. In general, masking effects are estimated by using spectrum information as excitation patterns. However, estimates of informational masking can hardly be obtained by only using spectrum information. Therefore, we estimated the effects of informational masking using time-domain information. Then, we calculated the cepstra of the envelopes’ magnitude histograms. If these cepstra are different between the target and the masker, the signals are not similar in the time-domain. Furthermore, the effect of informational masking would be low. Therefore, we considered the histograms’ cepstra distances (HCD) to estimate signal similarities. The signal similarities in our first experiment were estimated using five maskers by utilizing the HCD. These maskers were random noise, music, female speech, male speech, and target speaker’s speech. Male and female speech were more similar to the target speech than music and noise. Also, the same speaker’s speech was the most similar in the set of maskers. A listening test was carried out in the second experiment to verify the HCD. A double masker was used in this experiment as an effective informational masker. It has similar characteristics to reversal speech. The listening test results suggest the double-masker’s masking effects has the same relation with HCD. This suggests informational masking can be estimated by signal similarity using the HCD.  相似文献   

4.
Speech intelligibility (PB words) in traffic-like noise was investigated in a laboratory situation simulating three common listening situations, indoors at 1 and 4 m and outdoors at 1 m. The maximum noise levels still permitting 75% intelligibility of PB words in these three listening situations were also defined. A total of 269 persons were examined. Forty-six had normal hearing, 90 a presbycusis-type hearing loss, 95 a noise-induced hearing loss and 38 a conductive hearing loss. In the indoor situation the majority of the groups with impaired hearing retained good speech intelligibility in 40 dB(A) masking noise. Lowering the noise level to less than 40 dB(A) resulted in a minor, usually insignificant, improvement in speech intelligibility. Listeners with normal hearing maintained good speech intelligibility in the outdoor listening situation at noise levels up to 60 dB(A), without lip-reading (i.e., using non-auditory information). For groups with impaired hearing due to age and/or noise, representing 8% of the population in Sweden, the noise level outdoors had to be lowered to less than 50 dB(A), in order to achieve good speech intelligibility at 1 m without lip-reading.  相似文献   

5.
A triadic comparisons task and an identification task were used to evaluate normally hearing listeners' and hearing-impaired listeners' perceptions of synthetic CV stimuli in the presence of competition. The competing signals included multitalker babble, continuous speech spectrum noise, a CV masker, and a brief noise masker shaped to resemble the onset spectrum of the CV masker. All signals and maskers were presented monotically. Interference by competition was assessed by comparing Multidimensional Scaling solutions derived from each masking condition to that derived from the baseline (quiet) condition. Analysis of the effects of continuous maskers revealed that multitalker babble and continuous noise caused the same amount of change in performance, as compared to the baseline condition, for all listeners. CV masking changed performance significantly more than did brief noise masking, and the hearing-impaired listeners experienced more degradation in performance than normals. Finally, the velar CV maskers (g epsilon and k epsilon) caused significantly greater masking effects than the bilabial CV maskers (b epsilon and p epsilon), and were most resistant to masking by other competing stimuli. The results suggest that speech intelligibility difficulties in the presence of competing segments of speech are primarily attributable to phonetic interference rather than to spectral masking. Individual differences in hearing-impaired listeners' performances are also discussed.  相似文献   

6.
A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The model estimates the speech-to-noise envelope power ratio, SNR(env), at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech-shaped noise. The model was further tested in conditions with noisy speech subjected to reverberation and spectral subtraction. Good agreement between predictions and data was found in all cases. For spectral subtraction, an analysis of the model's internal representation of the stimuli revealed that the predicted decrease of intelligibility was caused by the estimated noise envelope power exceeding that of the speech. The classical concept of the speech transmission index fails in this condition. The results strongly suggest that the signal-to-noise ratio at the output of a modulation frequency selective process provides a key measure of speech intelligibility.  相似文献   

7.
Speech recognition performance was measured in normal-hearing and cochlear-implant listeners with maskers consisting of either steady-state speech-spectrum-shaped noise or a competing sentence. Target sentences from a male talker were presented in the presence of one of three competing talkers (same male, different male, or female) or speech-spectrum-shaped noise generated from this talker at several target-to-masker ratios. For the normal-hearing listeners, target-masker combinations were processed through a noise-excited vocoder designed to simulate a cochlear implant. With unprocessed stimuli, a normal-hearing control group maintained high levels of intelligibility down to target-to-masker ratios as low as 0 dB and showed a release from masking, producing better performance with single-talker maskers than with steady-state noise. In contrast, no masking release was observed in either implant or normal-hearing subjects listening through an implant simulation. The performance of the simulation and implant groups did not improve when the single-talker masker was a different talker compared to the same talker as the target speech, as was found in the normal-hearing control. These results are interpreted as evidence for a significant role of informational masking and modulation interference in cochlear implant speech recognition with fluctuating maskers. This informational masking may originate from increased target-masker similarity when spectral resolution is reduced.  相似文献   

8.
The Signal-to-Noise Ratio devised by Lochner and Burger contributed an objective design index for predicting speech intelligibility. Their index provided a measure of useful and detrimental reflected speech energy according to the integration and masking characteristics of hearing, and enabled predictions to be made from impulse measurements in models. However, it was found necessary to extend the Signal-to-Noise Ratio theory to account for the effect of fluctuating ambient background noise on speech intelligibility. A modified Signal-to-Noise Ratio was derived from a best-fitting empirical correlation with speech intelligibility in a series of measurements in existing auditoria. In the modified Signal-to-Noise Ratio ambient background noise is no longer considered in terms of its steady state characteristics but more specifically in terms of its transient and spectral characteristics given by the concept of the L10 PNC level. The index has been applied as design criteria to prediction and to evaluation techniques.  相似文献   

9.
When a target-speech/masker mixture is processed with the signal-separation technique, ideal binary mask (IBM), intelligibility of target speech is remarkably improved in both normal-hearing listeners and hearing-impaired listeners. Intelligibility of speech can also be improved by filling in speech gaps with un-modulated broadband noise. This study investigated whether intelligibility of target speech in the IBM-treated target-speech/masker mixture can be further improved by adding a broadband-noise background. The results of this study show that following the IBM manipulation, which remarkably released target speech from speech-spectrum noise, foreign-speech, or native-speech masking (experiment 1), adding a broadband-noise background with the signal-to-noise ratio no less than 4 dB significantly improved intelligibility of target speech when the masker was either noise (experiment 2) or speech (experiment 3). The results suggest that since adding the noise background shallows the areas of silence in the time-frequency domain of the IBM-treated target-speech/masker mixture, the abruption of transient changes in the mixture is smoothed and the perceived continuity of target-speech components becomes enhanced, leading to improved target-speech intelligibility. The findings are useful for advancing computational auditory scene analysis, hearing-aid/cochlear-implant designs, and understanding of speech perception under "cocktail-party" conditions.  相似文献   

10.
The role of perceived spatial separation in the unmasking of speech   总被引:12,自引:0,他引:12  
Spatial separation of speech and noise in an anechoic space creates a release from masking that often improves speech intelligibility. However, the masking release is severely reduced in reverberant spaces. This study investigated whether the distinct and separate localization of speech and interference provides any perceptual advantage that, due to the precedence effect, is not degraded by reflections. Listeners' identification of nonsense sentences spoken by a female talker was measured in the presence of either speech-spectrum noise or other sentences spoken by a second female talker. Target and interference stimuli were presented in an anechoic chamber from loudspeakers directly in front and 60 degrees to the right in single-source and precedence-effect (lead-lag) conditions. For speech-spectrum noise, the spatial separation advantage for speech recognition (8 dB) was predictable from articulation index computations based on measured release from masking for narrow-band stimuli. The spatial separation advantage was only 1 dB in the lead-lag condition, despite the fact that a large perceptual separation was produced by the precedence effect. For the female talker interference, a much larger advantage occurred, apparently because informational masking was reduced by differences in perceived locations of target and interference.  相似文献   

11.
Although many studies have shown that intelligibility improves when a speech signal and an interfering sound source are spatially separated in azimuth, little is known about the effect that spatial separation in distance has on the perception of competing sound sources near the head. In this experiment, head-related transfer functions (HRTFs) were used to process stimuli in order to simulate a target talker and a masking sound located at different distances along the listener's interaural axis. One of the signals was always presented at a distance of 1 m, and the other signal was presented 1 m, 25 cm, or 12 cm from the center of the listener's head. The results show that distance separation has very different effects on speech segregation for different types of maskers. When speech-shaped noise was used as the masker, most of the intelligibility advantages of spatial separation could be accounted for by spectral differences in the target and masking signals at the ear with the higher signal-to-noise ratio (SNR). When a same-sex talker was used as the masker, the intelligibility advantages of spatial separation in distance were dominated by binaural effects that produced the same performance improvements as a 4-5-dB increase in the SNR of a diotic stimulus. These results suggest that distance-dependent changes in the interaural difference cues of nearby sources play a much larger role in the reduction of the informational masking produced by an interfering speech signal than in the reduction of the energetic masking produced by an interfering noise source.  相似文献   

12.
Speech intelligibility was investigated by varying the number of interfering talkers, level, and mean pitch differences between target and interfering speech, and the presence of tactile support. In a first experiment the speech-reception threshold (SRT) for sentences was measured for a male talker against a background of one to eight interfering male talkers or speech noise. Speech was presented diotically and vibro-tactile support was given by presenting the low-pass-filtered signal (0-200 Hz) to the index finger. The benefit in the SRT resulting from tactile support ranged from 0 to 2.4 dB and was largest for one or two interfering talkers. A second experiment focused on masking effects of one interfering talker. The interference was the target talker's own voice with an increased mean pitch by 2, 4, 8, or 12 semitones. Level differences between target and interfering speech ranged from -16 to +4 dB. Results from measurements of correctly perceived words in sentences show an intelligibility increase of up to 27% due to tactile support. Performance gradually improves with increasing pitch difference. Louder target speech generally helps perception, but results for level differences are considerably dependent on pitch differences. Differences in performance between noise and speech maskers and between speech maskers with various mean pitches are explained by the effect of informational masking.  相似文献   

13.
Binaural speech intelligibility of individual listeners under realistic conditions was predicted using a model consisting of a gammatone filter bank, an independent equalization-cancellation (EC) process in each frequency band, a gammatone resynthesis, and the speech intelligibility index (SII). Hearing loss was simulated by adding uncorrelated masking noises (according to the pure-tone audiogram) to the ear channels. Speech intelligibility measurements were carried out with 8 normal-hearing and 15 hearing-impaired listeners, collecting speech reception threshold (SRT) data for three different room acoustic conditions (anechoic, office room, cafeteria hall) and eight directions of a single noise source (speech in front). Artificial EC processing errors derived from binaural masking level difference data using pure tones were incorporated into the model. Except for an adjustment of the SII-to-intelligibility mapping function, no model parameter was fitted to the SRT data of this study. The overall correlation coefficient between predicted and observed SRTs was 0.95. The dependence of the SRT of an individual listener on the noise direction and on room acoustics was predicted with a median correlation coefficient of 0.91. The effect of individual hearing impairment was predicted with a median correlation coefficient of 0.95. However, for mild hearing losses the release from masking was overestimated.  相似文献   

14.
The word recognition ability of 4 normal-hearing and 13 cochlearly hearing-impaired listeners was evaluated. Filtered and unfiltered speech in quiet and in noise were presented monaurally through headphones. The noise varied over listening situations with regard to spectrum, level, and temporal envelope. Articulation index theory was applied to predict the results. Two calculation methods were used, both based on the ANSI S3.5-1969 20-band method [S3.5-1969 (American National Standards Institute, New York)]. Method I was almost identical to the ANSI method. Method II included a level- and hearing-loss-dependent calculation of masking of stationary and on-off gated noise signals and of self-masking of speech. Method II provided the best prediction capability, and it is concluded that speech intelligibility of cochlearly hearing-impaired listeners may also, to a first approximation, be predicted from articulation index theory.  相似文献   

15.
The detection of 500- or 2000-Hz pure-tone signals in unmodulated and modulated noise was investigated in normal-hearing and sensorineural hearing-impaired listeners, as a function of noise bandwidth. Square-wave modulation rates of 15 and 40 Hz were used in the modulated noise conditions. A notched noise measure of frequency selectivity and a gap detection measure of temporal resolution were also obtained on each subject. The modulated noise results indicated a masking release that increased as a function of increasing noise bandwidth, and as a function of decreasing modulation rate for both groups of listeners. However, the improvement of threshold with increasing modulated noise bandwidth was often greatly reduced among the sensorineural hearing-impaired listeners. It was hypothesized that the masking release in modulated noise may be due to several types of processes including across-critical band analysis (CMR), within-critical band analysis, and suppression. Within-band effects appeared to be especially large at the higher frequency region and lower modulation rate. In agreement with previous research, there was a significant correlation between frequency selectivity and masking release in modulated noise. At the 500-Hz region, masking release was correlated more highly with the filter skirt and tail measures than with the filter passband measure. At the 2000-Hz region, masking release was correlated more with the filter passband and skirt measures than with the filter tail measure. The correlation between gap detection and masking release was significant at the 40-Hz modulation rate, but not at the 15-Hz modulation rate. The results of this study suggest that masking release in modulated noise is limited by frequency selectivity at low modulation rates, and by both frequency selectivity and temporal resolution at high modulation rates. However, even when the present measures of frequency selectivity and temporal resolution are both taken into account, significant variance in masking release still remains unaccounted for.  相似文献   

16.
When listening to natural speech, listeners are fairly adept at using cues such as pitch, vocal tract length, prosody, and level differences to extract a target speech signal from an interfering speech masker. However, little is known about the cues that listeners might use to segregate synthetic speech signals that retain the intelligibility characteristics of speech but lack many of the features that listeners normally use to segregate competing talkers. In this experiment, intelligibility was measured in a diotic listening task that required the segregation of two simultaneously presented synthetic sentences. Three types of synthetic signals were created: (1) sine-wave speech (SWS); (2) modulated noise-band speech (MNB); and (3) modulated sine-band speech (MSB). The listeners performed worse for all three types of synthetic signals than they did with natural speech signals, particularly at low signal-to-noise ratio (SNR) values. Of the three synthetic signals, the results indicate that SWS signals preserve more of the voice characteristics used for speech segregation than MNB and MSB signals. These findings have implications for cochlear implant users, who rely on signals very similar to MNB speech and thus are likely to have difficulty understanding speech in cocktail-party listening environments.  相似文献   

17.
Two experiments compared the effect of supplying visual speech information (e.g., lipreading cues) on the ability to hear one female talker's voice in the presence of steady-state noise or a masking complex consisting of two other female voices. In the first experiment intelligibility of sentences was measured in the presence of the two types of maskers with and without perceived spatial separation of target and masker. The second study tested detection of sentences in the same experimental conditions. Results showed that visual cues provided more benefit for both recognition and detection of speech when the masker consisted of other voices (versus steady-state noise). Moreover, visual cues provided greater benefit when the target speech and masker were spatially coincident versus when they appeared to arise from different spatial locations. The data obtained here are consistent with the hypothesis that lipreading cues help to segregate a target voice from competing voices, in addition to the established benefit of supplementing masked phonetic information.  相似文献   

18.
The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.  相似文献   

19.
The intelligibility of speech signals processed to retain either temporal envelope (E) or fine structure (TFS) cues within 16 0.4-oct-wide frequency bands was evaluated when processed stimuli were periodically interrupted at different rates. The interrupted E- and TFS-coded stimuli were highly intelligible in all conditions. However, the different patterns of results obtained for E- and TFS-coded speech suggest that the two types of stimuli do not convey identical speech cues. When an effect of interruption rate was observed, the effect occurred at low interruption rates (<8 Hz) and was stronger for E- than TFS-coded speech, suggesting larger involvement of modulation masking with E-coded speech.  相似文献   

20.
Reverberation interferes with the ability to understand speech in rooms. Overlap-masking explains this degradation by assuming reverberant phonemes endure in time and mask subsequent reverberant phonemes. Most listeners benefit from binaural listening when reverberation exists, indicating that the listener's binaural system processes the two channels to reduce the reverberation. This paper investigates the hypothesis that the binaural word intelligibility advantage found in reverberation is a result of binaural overlap-masking release with the reverberation acting as masking noise. The tests utilize phonetically balanced word lists (ANSI-S3.2 1989), that are presented diotically and binaurally with recorded reverberation and reverberation-like noise. A small room, 62 m3, reverberates the words. These are recorded using two microphones without additional noise sources. The reverberation-like noise is a modified form of these recordings and has a similar spectral content. It does not contain binaural localization cues due to a phase randomization procedure. Listening to the reverberant words binaurally improves the intelligibility by 6.0% over diotic listening. The binaural intelligibility advantage for reverberation-like noise is only 2.6%. This indicates that binaural overlap-masking release is insufficient to explain the entire binaural word intelligibility advantage in reverberation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号