首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Converging spherical and cylindrical elastic–plastic waves in an isotropic work-hardening medium is investigated on the basis of a finite difference method. The small amplitude pressure is applied instantaneously and maintained on the outer surface of a spherical or a cylindrical medium. It is found that for undercritical loading, the induced wave structure is an elastic front followed in turn by an expanding plastic region and an expanding elastic region. For supercritical loading, the elastic front is followed in turn by an expanding plastic region, a narrowing elastic region and an expanding plastic region.After yielding is initiated, the strength of the elastic front is constant and equal to the critical loading pressure. The motion of the continuous elastic–plastic interface is discussed in detail. Spatial distributions of pressure near the axis show the strength of the converging wave is nearly doubled in the reflecting stage.  相似文献   

2.
In this paper, we investigated the (2+1)-dimensional Konopelchenko–Dubrovsky equation. The lump waves, solitary waves as well as interaction between lump waves and solitary waves are presented based on the Hirota bilinear form of this equation. It is worth noting that the rational solutions are obtained by taking a long wave limit, and we also discussed the lump solutions and rogue wave solutions. Moreover, all these solutions are presented via 3-dimensional plots and density plots with choosing some special parameters to show the dynamic graphs.  相似文献   

3.
Under investigation in this work is the general coupled nonlinear Schrödinger (gCNLS) equation, which can be used to describe a wide variety of physical processes. By using Darboux transformation, the new higher-order rogue wave solutions of the equation are well constructed. These solutions exhibit rogue waves on a multi-soliton background. Moreover, the dynamics of these solutions is graphically discussed. Our results would be of much importance in enriching and predicting rogue wave phenomena arising in nonlinear and complex systems.  相似文献   

4.
It is well known that the existence of edge waves is directly related to the localization of the acoustic field in the wedge. In this paper, it is shown experimentally and numerically that, for wedge angles smaller than about 100° (this angle may vary from one material to an other), the edge modes are confined in the tip of the wedge and may be considered as localized. For higher wedge angles, the analysis of the results shows a delocalization of the guided waves, which induces a new repartition of the acoustical energy in the wedge and a decrease in the amplitude of the wedge wave. This observation is numerically verified via an analysis in the time domain. Experiments realized on obtuse wedges demonstrate that the first ASF mode may be detected for wedge angles up to about 110°.  相似文献   

5.
潘安  范军  卓琳凯 《物理学报》2012,61(21):282-292
研究内部真空周期性加隔板圆柱壳在水中的声散射特性.壳体振动用薄壳理论的Donnell方程描述,隔板振动用相互独立的薄板纯弯曲振动和平面应力状态下的振动方程描述.考虑轴向、切向、径向三个方向的力和弯矩共同作用导出了散射声场的解析表达式.数值计算给出远场收发合置情况下的角度-频率谱图,并据此进行机理分析.通过与内部周期性加环肋圆柱壳声散射的角度-频率谱图比较发现,除周期加肋产生的Bragg散射波与弯曲Bloch-Floquet波外,加隔板的情况还存在明显的隔板共振亮线,并且发生隔板共振与壳体弹性波、Bragg散射波、弯曲Bloch-Floquet波耦合的现象.通过实验对理论进行了验证,在实验的频率范围内,Bragg散射亮线与理论符合得很好,部分Bloch-Floquet波散射亮线和隔板共振散射亮线也与理论符合.  相似文献   

6.
In this work, we investigate the (2+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation, which can be used to describe weakly dispersive waves propagating in the quasi media and fluid mechanics. We construct the more general lump solutions, localized in all directions in space, with more arbitrary autocephalous parameters. By considering a stripe soliton generated completely by lump solution, a lumpoff solution is presented. Its lump part is cut by soliton part before or after a specific time, with a specific divergence relationship. Furthermore, combining a pair of stripe solitons, we obtain the special rogue waves when lump solution is cut by double solitons. Our results show that the emerging time and place of the rogue waves can be caught through tracking the moving path of lump solution, and confirming when and where it happens a collision with the visible soliton. Finally, some graphic analysis are discussed to understand the propagation phenomena of these solutions.  相似文献   

7.
A method is given to generate the non-linear interaction (collision) of linearly polarized gravity coupled torsion waves in a non-metric theory. Explicit examples are given in which strong mutual focussing of gravitational waves containing impulsive and shock components coupled with torsion waves does not result in a curvature singularity. However, the collision of purely torsion waves displays a curvature singularity in the region of interaction.  相似文献   

8.
It is pointed out that scalar-tensor theories of gravity admit solutions in which the metric is Minkowskian although the scalar and matter fields do not vanish. Explicit pp-wave solutions of the Brans-Dicke-Maxwell theory are presented. These include solutions with metrics that are flat or Ricci flat even though the Maxwell and scalar fields are non-zero.  相似文献   

9.
In this paper, we investigate a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Ku-pershmidt equation. The lump waves, lumpoff waves, and rogue waves are presented based on the Hirota bilinear form of this equation. It is worth noting that the moving path as well as the appearance time and place of the lump waves are given. Moreover, the special rogue waves are considered when lump solution is swallowed by double solitons. Finally, the corresponding characteristics of the dynamical behavior are displayed.  相似文献   

10.
Rogue waters   总被引:1,自引:0,他引:1  
  相似文献   

11.
The interaction between a very-high-frequency gravitational wave (VHFGW) and an electromagnetic wave (EMW) in a rectangular waveguide is discussed in the weak field limit. The background EMW is assumed to be initially in the TE10 mode along the waveguide. It is then shown that a VHFGW, having the same frequency and direction of propagation of the EMW, induces through the waveguide a TE mode with a frequency doubled when compared to the original EMW frequency. In that respect, the GW acts similar to a non-linear medium, giving rise to a Second Harmonic Generation (SHG) effect.  相似文献   

12.
Summary In the present paper we develop a systematic analysis of the dispersion and dissipation effects on internal gravity waves in fluids of geophysical interest. Dissipation induces a cut-off in the short wavelengths, leading to an admissible range of waves. Defining a suitable criterion for detection of waves, an observable wave range results, in which the frequency dispersion is nearly the same as for the inviscid case, whereas the amplitude is damped. The peculiar behaviour displayed by the dispersion relationship for Prandtl number equal to one is discussed.  相似文献   

13.
14.
We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped nonlinear Schrödinger (NLS) equation into the standard NLS with constant coefficients. The transformation is valid as long as |Γt|?1|Γt|?1, with Γ the growth/damping rate of the waves due to the wind/dissipation. Approximate rogue wave solutions of the equation are presented and discussed. The results shed some lights on the effects of wind and dissipation on the formation of rogue waves.  相似文献   

15.
We study the electronic surface waves (the so-called Tamm states) localized at the interface between a graphene-based superlattice and a homogeneous graphene by applying suitable electrodes on a graphene sheet. The magnitude as well as the sign of the slope of the Tamm dispersive curve can be flexibly tuned just by varying the external voltage. Particularly, in addition to the conventional forward Tamm states, backward Tamm states in which the wave vector of the electronic surface wave is antiparallel with the group velocity can be realized.  相似文献   

16.
An intuitive definition of standing gravitational waves is proposed. Some main classes of exact vacuum solutions are searched for standing gravitational waves, in most cases with a negative result. Only some Einstein–Rosen waves meet the conditions.  相似文献   

17.
A new exactly solvable (1+1)-dimensional complex nonlinear wave equation exhibiting rich analytic properties has been introduced. A rogue wave (RW), localized in space–time like Peregrine RW solution, though richer due to the presence of free parameters is discovered. This freedom allows to regulate amplitude and width of the RW as needed. The proposed equation allows also an intriguing topology changing accelerated dark soliton solution in spite of constant coefficients in the equation.  相似文献   

18.
P K Kaw  A Sen 《Pramana》1997,48(2):675-692
We discuss the nonlinear propagation of relativistically intense electromagnetic waves into collisionless plasmas with special emphasis on one dimensional plane wave solutions of the propagating, standing and modulated types. These solutions exhibit a rich variety of phenomena associated with relativistic electron mass variation and coupling between transverse electromagnetic and longitudinal fields. They have important applications to problems of laser propagation, self-focusing in overdense plasmas, particle and photon acceleration and to electromagnetic radiation around pulsars.  相似文献   

19.
A new generation of frequency synthesizers up to 370 GHz is described. The main parts of them are microwave frequency synthesizer covering 11–15 GHz band, effective frequency multipliers-mixers using an opposite pair of planar Shottky diodes and a lock-in loop of a backward-wave oscillator tube covering millimeter and longer part of submillimeter wave bands with tens of milliwatts of output power. The ways of further increase in the operating frequency of such synthesizers are discussed.  相似文献   

20.
《Physics letters. A》2014,378(14-15):1025-1030
In the wind-driven wave regime, the Miles mechanism gives an estimate of the growth rate of the waves under the effect of wind. We consider the case where this growth rate, normalised with respect to the frequency of the carrier wave, is of the order of the wave steepness. Using the method of multiple scales, we calculate the terms which appear in the nonlinear Schrödinger (NLS) equation in this regime of fast-growing waves. We define a coordinate transformation which maps the forced NLS equation into the standard NLS with constant coefficients, that has a number of known analytical soliton solutions. Among these solutions, the Peregrine and the Akhmediev solitons show an enhancement of both their lifetime and maximum amplitude which is in qualitative agreement with the results of tank experiments and numerical simulations of dispersive focusing under the action of wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号