首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Khorasani S  Adibi A 《Optics letters》2003,28(16):1472-1474
We present a theoretical analysis of wave propagation in rectangular- and square-lattice photonic crystals by approximating the arbitrary refractive-index function with a staircase profile. This profile has a number of tunable parameters that allow one to fit the band structures of the staircase and the desired structure over a large frequency range. The staircase profile is such that its corresponding two-dimensional wave equation decomposes into two one-dimensional equations by means of a constant decoupling parameter. We show that basic features of the band structure and Bloch waves in photonic crystals can be analyzed theoretically through this simple approximation.  相似文献   

2.
This article presents an investigation of heat transfer in a porous medium adjacent to a vertical plate. The porous medium is subjected to a magnetohydrodynamic effect and suction velocity. The governing equations are nondepersonalized and converted into ordinary differential equations. The resulting equations are solved with the help of the finite difference method. The impact of various parameters, such as the Prandtl number, Grashof number, permeability parameter, radiation parameter, Eckert number, viscous dissipation parameter, and magnetic parameter, on fluid flow characteristics inside the porous medium is discussed. Entropy generation in the medium is analyzed with respect to various parameters, including the Brinkman number and Reynolds number. It is noted that the velocity profile decreases in magnitude with respect to the Prandtl number, but increases with the radiation parameter. The Eckert number has a marginal effect on the velocity profile. An increased radiation effect leads to a reduced thermal gradient at the hot surface.  相似文献   

3.
Numerical investigation of the dusty Williamson fluid with the dependency of time has been done in current disquisition. The flow of multiphase liquid/particle suspension saturating the medium is caused by stretching of porous surface. The influence of magnetic field and heat generation/absorption is observed. It is assumed that particle has a spherical shape and distributed uniformly in fluid matrix. The unsteady two-dimensional problems are modeled for both fluid and particle phase using conservation of mass, momentum and heat transfer. The finalized model generates the non-dimensioned parameters, namely Weissenberg number, unsteadiness parameter, magnetic parameter,heat generation/absorption parameter, Prandtl number, fluid particle interaction parameter, and mass concentration parameters. The numerical solution is obtained. Locality of skin friction and Nusselt number is deliberately focused to help of tables and graphs. While inferencing the current article it is clearly observed that increment of Williamson parameter, unsteadiness parameter, magnetic parameter, volume fraction parameter, and mass concentration parameter reduces the velocity profile of fluid and solid particles as well. And increment of Prandtl number, unsteadiness parameter,volume fraction parameter, and mass concentration parameter reduces the temperature profile of fluid and solid particles as well.  相似文献   

4.
We give a method to estimate the transverse modal field profile of weakly guiding single mode graded-index fibers from the far-field radiation pattern. We also show that if the parameter koa is known, then the q and V values of the fiber can also be determined; here ko is the free space wave number, a the radius of the fiber core, q the profile parameter, and V the normalised frequency.  相似文献   

5.
A number of single parameter variational approximations for single-mode graded-index fibers have been reported in the literature. One of these approximations was also proposed by us some time ago which describes the propagation characteristics of such fibers having power-law profile with a high degree of accuracy. Using these approximations we have computed the propagation constant and the normalized dispersion for single-mode fibers with smoothed-out and composite refractive index profiles which are of great current interest. We have shown that the single parameter approximation proposed by us earlier computes these propagation characteristics with a better degree of accuracy than all other single parameter approximations even for these special types of profiles.  相似文献   

6.
We feel happy when web browsing operations provide us with necessary information; otherwise, we feel bitter. How to measure this happiness (or bitterness)? How does the profile of happiness grow and decay during the course of web browsing? We propose a probabilistic framework that models the evolution of user satisfaction, on top of his/her continuous frustration at not finding the required information. It is found that the cumulative satisfaction profile of a web-searching individual can be modeled effectively as the sum of a random number of random terms, where each term is a mutually independent random variable, originating from ‘memoryless’ Poisson flow. Evolution of satisfaction over the entire time interval of a user’s browsing was modeled using auto-correlation analysis. A utilitarian marker, a magnitude of greater than unity of which describes happy web-searching operations, and an empirical limit that connects user’s satisfaction with his frustration level—are proposed too. The presence of pertinent information in the very first page of a website and magnitude of the decay parameter of user satisfaction (frustration, irritation etc.) are found to be two key aspects that dominate the web user’s psychology. The proposed model employed different combinations of decay parameter, searching time and number of helpful websites. The obtained results are found to match the results from three real-life case studies.  相似文献   

7.
This article deals with the gravitational lensing (GL) of gravitational waves (GW). We compute the increase in the number of detected GW events due to GL. First, we check that geometrical optics is valid for the GW frequency range on which Earth-based detectors are sensitive, and that this is also partially true for what concerns the future space-based interferometer LISA. To infer this result, both the diffraction parameter and a cut-off frequency are computed. Then, the variation in the number of GW signals is estimated in the general case, and applied to some lens models: point mass lens and singular isothermal sphere (SIS profile). An estimation of the magnification factor has also been done for the softened isothermal sphere and for the King profile. The results appear to be strongly model-dependent, but in all cases the increase in the number of detected GW signals is negligible. The use of time delays among images is also investigated.  相似文献   

8.
The rotary flagellar motor of Escherichia coli bacterium switches stochastically between the clockwise (CW) and counterclockwise (CCW) direction. We found that the CW and CCW intervals could be described by a gamma distribution, suggesting the existence of hidden Markov steps preceding each motor switch. Power spectra of time series of switching events exhibited a peaking frequency instead of the Lorentzian profile expected from standard kinetic two-state models. Our analysis indicates that the number of hidden steps may be a key dynamical parameter underlying the switching process in a single bacterial motor as well as in large cooperative molecular systems.  相似文献   

9.
肖峻  吕百达 《光学学报》1998,18(12):646-1651
采用Skupshy-Lee(S-L)球谐模分解方法,按一个简化的物理模型,对激光直接驱动聚变中不同束-靶条件下的靶面初始辐照不均匀度的均方根偏差进行了数值计算,由此分析了在光束完全对称排布的多光束辐照系统中,光束截面光强分布,聚焦透镜F数,离焦参数(靶心室焦距离与靶丸半径之比),光束数这几个主要因素对辐照的均匀性的影响。  相似文献   

10.
This continuation deals with the bioconvection flow of magnetized Maxwell nanofluid over a stretched cylinder in presence of slip effects. The novel features of activation energy and thermal radiation are also encountered to analyze the flow. The higher order slip relations are introduced to inspect the thermal flow problem. The flow model is developed in terms of dimensionless equations via appropriate variables. The numerical simulations are presented with shooting scheme by using MATLAB software. The physical outcomes of interesting parameters are visualized. The observations show that velocity profile reduces with unsteady parameter, curvature constant and second order slip factor. The temperature profile enhanced with first order velocity slip parameter and curvature constant. Moreover, nanofluid concentration reduces with Lewis number and Brownian constant.  相似文献   

11.
The current study centralizes on unsteady free convection slip flow of Casson fluid past a vertical permeable plate with Hall current, radiative heat flux, and variable suction. The nonlinear convection is subjected to quartic order. Perturbation method is used to convert the non-linear coupled partial differential equation of the momentum and energy to a system of ordinary differential equations. The dimensionless governing equations are solved analytically for velocity and temperature profiles. The graphs are plotted for sundry parameters for variations in the distinct flow fields w.r.t distance from the plate. Variation in the skin friction for the axial and transverse cases are presented in the form of graphs for various parameters. It is observed that with the increase in the order of non-linear convection and value of radiation parameter, the velocity field increases in Casson fluid. The increase in heat absorption parameter and Prandtl number decreases the temperature profile and increase in radiative heat flux parameter increases the temperature profile.  相似文献   

12.
The aim of this research is to analyze the effects of mass transfer on second grade fluid flow subjected to the heat transfer incorporated with the relaxation time to reach the state of equilibrium on or after the state of upheaval. A new heat model namely Cattaneo–Christov heat flux comprising the relaxation time is employed instead of very commonly used mundane model based on classical theory of heat flux. Flow is considered towards stretching cylinder in the existence of external magnetic field. Suitable transformations are first used to deduce the momentum, heat and concentration equations and are then solved analytically. The effects of physical quantities such as fluid parameter, magnetic field, Schmidt number, relaxation time, curvature parameter, Prandtl number and chemical reaction on momentum, temperature and concentration profile are examined graphically whereas for validation of results convergence analysis along with residual error are obtained numerically. A comparison of obtained results is also given with the existing literature as a limiting case of reported problem and are found an excellent agreement. The temperature profile indicates thinning effect for higher values of Prandtl number and relaxation time. It is also noted that the velocity increases with increasing values of fluid parameter whereas it declines for the case of magnetic field. This study can be used an application of central heating system and to measure the fast chemical reactions rates.  相似文献   

13.
The transverse profile dependence of elliptic flow is studied in a parton cascade model. We compare results from the binary scaling profile to results from the wounded nucleon scaling profile. The impact parameter dependence of elliptic flow is shown to depend sensitively on the transverse profile of initial particles, however, if elliptic flow is plotted as a function of the relative multiplicity, the nuclear profile dependence disappears. The insensitivity was found previously in a hydrodynamical calculation. Our calculations indicate that the insensitivity is also valid with additional viscous corrections. In addition, the minimum bias differential elliptic flow is demonstrated to be insensitive to the nuclear profile of the system.  相似文献   

14.
Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary.A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.  相似文献   

15.
We used four different non-spherical particle models to compute optical properties of an arctic ice cloud and to simulate corresponding cloud radiative forcings and fluxes. One important finding is that differences in cloud forcing, downward flux at the surface, and absorbed flux in the atmosphere resulting from the use of the four different ice cloud particle models are comparable to differences in these quantities resulting from changing the surface albedo from 0.4 to 0.8, or by varying the ice water content (IWC) by a factor of 2. These findings show that the use of a suitable non-spherical ice cloud particle model is very important for a realistic assessment of the radiative impact of arctic ice clouds. The differences in radiative broadband fluxes predicted by the four different particle models were found to be caused mainly by differences in the optical depth and the asymmetry parameter. These two parameters were found to have nearly the same impact on the predicted cloud forcing. Computations were performed first by assuming a given vertical profile of the particle number density, then by assuming a given profile of the IWC. In both cases, the differences between the cloud radiative forcings computed with the four different non-spherical particle models were found to be of comparable magnitude. This finding shows that precise knowledge of ice particle number density or particle mass is not sufficient for accurate prediction of ice cloud radiative forcing. It is equally important to employ a non-spherical shape model that accurately reproduces the ice particle's dimension-to-volume ratio and its asymmetry parameter. The hexagonal column/plate model with air-bubble inclusions seems to offer the highest degree of flexibility.  相似文献   

16.
We demonstrate that gain profile of a distributed Raman amplifier is sensitive to its parameter variation, such as loss/gain coefficients change or partial pump failure. Gain flatness can be restored by adjusting power of pump lasers.  相似文献   

17.
We study the steady state structure and dynamics of an interface in a pure Ising system on a square lattice placed in an inhomogeneous external field with a profile designed to stabilize a flat interface and translated with velocity v(e). For small v(e), the interface is stuck to the profile, is macroscopically smooth, and is rippled with a periodicity in general incommensurate with the lattice parameter. For arbitrary orientations of the profile, the local slope of the interface locks in to one of infinitely many rational values (devil's staircase) which most closely approximates the profile. These "lock-in" structures and ripples disappear as v(e) increases. For still larger v(e) the profile detaches from the interface.  相似文献   

18.
We demonstrate the possibility of determining simultaneously the parameters of optical fibres using a stimulated four-wave mixing method without the requirement of considering the particular refractive index profile. The most suitable modal combinations that minimize the error in neglecting the refractive index profile are found and their dependence on the value of the V parameter. Experimental results that verify the accuracy of the proposed method are also given.  相似文献   

19.
The candid intension of this article is to inspect the heat and mass transfer of a magnetohydrodynamic tangent hyperbolic nanofluid. The nanofluid flow has been assumed to be directed by a wedge on its way. In addition, the collective stimulus of the convective heating mode with thermal radiation is inspected. The governing set of PDEs is rendered into that of the coupled nonlinear ODEs. The resulting ordinary differential equations are then solved by the well known shooting technique for two different cases; the flow over a static wedge and flow over a stretching wedge. The impact of intricate physical parameters on the velocity, temperature and concentration profiles is analyzed graphically. It is noticed that the intensifying values of the generalized Biot number, Brownian motion parameter, thermophoresis parameter and Weissenberg number enhances the dimensionless temperature profile.  相似文献   

20.
We report the first direct observation of Huang–Rhys side-bands in the photoluminescence spectrum of a single InAs/GaAs quantum dot (QD). At low temperature (10 K) the single QD spectrum has a quasi-Lorentzian profile. At higher temperatures, we observe a strong deviation from a Lorentzian profile with the appearance of asymmetric side-bands which become symmetric above 70 K. We obtain an excellent agreement with theoretical calculations done in the framework of the Huang–Rhys formalism. We conclude that the zero-phonon linewidth is the relevant parameter for the observation of the low-energy acoustic phonon side-bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号