首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
This study examined the oxidation and reduction behavior of mass-selected Au clusters consisting of 2-13 atoms deposited on silica. An atomic oxygen environment was used for the oxidation of Au. X-ray photoelectron spectroscopy (XPS) was used to identify Au(III) and Au(O). Au5, Au7 and Au13 clusters deposited on the as-prepared SiO2/Si substrates were highly inert towards oxidation, whereas the other clusters could be oxidized, i.e. the chemical property drastically changed with the number of atoms in a cluster. The size-selectivity in chemical reactivity remained unchanged upon air-exposure. The chemical properties of the deposited Au clusters were unchanged after annealing at 250 °C. Annealing at higher temperatures caused structural changes to the surface, as determined by the oxidation behavior. XPS of the deposited Au clusters upon annealing indicated charge transfer from Au to silica.  相似文献   

2.
采用相对论有效原子实势(RECP)近似和密度泛函(B3LYP)方法,选择LANL2DZ基组,优化得到了AunY(n=1—9)二元掺杂团簇稳定的基态结构和电子性质.研究结果表明,掺杂Y原子的AunY(n=1—9)团簇随n的变化,其电离势、电子亲合能和费米能级与Aun(n=2—9)一样具有“奇-偶”振荡效应;团簇离子的稳定性具有“幻数”现象,Au2Y+和Au6Y+比其他团簇离子更稳定,与质谱实验结果一致;同一团簇中,团簇最稳定的异构体(基态)是趋于Y原子有最大的邻近的Au原子数. 关键词: Au-Y团簇 密度泛函 平衡几何结构 电子性质  相似文献   

3.
A systematic study of the X2Aun (X = La, Y, Sc; n = 1–9) clusters are performed by using the density functional theory at TPSS level. The structures, stabilities, electronic, and magnetic properties are investigated in comparison with pure gold clusters. The results show that the transition points of the doped clusters from two-dimensional to three-dimensional structure are obviously earlier than gold clusters. The impurity X atoms tend to occupy the most highly coordinated position and form the largest probable number of bonds with gold atoms. In addition, the impurity atoms can strongly enhance the stabilities of gold clusters. It indicates that the impurity atoms dramatically affect the geometries and stabilities of the Aun clusters. The highest occupied molecular orbital–lowest occupied molecular orbital gap, vertical ionisation potential, and chemical hardness show that the X2Au6 clusters have higher stabilities than the others. In La2Au1–9, Y2Au1–7, and Sc2Au1–4 clusters, the charges transfer from X atoms to the Aun frames. The total magnetic moments of X2Aun clusters exist distinctly odd–even alternation behaviours except for La2Au4 and Sc2Au4 clusters.  相似文献   

4.
The geometric structures, stabilities, and electronic properties of small size anionic [AunRb]? and Aun+1? (n = 1–10) clusters have been systematically investigated by using density functional theory. The optimised geometries show that the structures of [AunRb]? clusters favour the three-dimensional structure at n ≥ 8. The Rb atoms tend to occupy the most highly coordinated position and form the largest probable number of bonds with gold atoms. One Au atom capped on [Aun-1Rb]? structures is the dominant growth pattern for n = 2–8 and Rb atom capped on Aun? structures for n = 9–10. The averaged atomic bonding energies, fragmentation energies, second-order difference of energies, and highest occupied molecular orbital–lowest unoccupied molecular orbital gaps exhibit a pronounced even–odd alternations phenomenon. The charges in [AunRb]? clusters transfer from the Rb atoms to Aun host. In addition, it is found that the most favourable dissociation channel of the [AunRb]? clusters is to eject a Rb atom and the highest energy dissociation path is Rb? anion ejection.  相似文献   

5.
197Au Mössbauer spectra of a series of glutathionate-protected gold clusters, Au n (SG) m , with n = 10 ? ~55, were re-analyzed to understand the structure evolution behavior. The numbers of gold atoms coordinated by different numbers (0, 1, and 2) of the GS ligands were successfully determined by assuming individual isomer shifts and quadrupole splittings for the three sites in Au25(SG)18 (Tsukuda et al., Chem Lett 40:1292, 2011). The analysis revealed the drastic structural evolution of Au n (SG) m in the range of n = 10 ? ~55. In Au10(SG)10, all the gold atoms are bonded to GS ligands, indicating –Au–S(G)– cyclic structures. A catenane structure was proposed for Au10(SG)10. At n = 25, a single Au atom without the GS ligation appeared, consistent with the formation of an icosahedral Au13 core protected by six staples, –S(G)–[Au–S(G)–]2. At n = 39, it is considered that Au39(SG)24 has a similar structure to that of Au38(SC2H4Ph)24 with face-fused bi-icosahedral Au23 core.  相似文献   

6.
In the work the focus is on the preparation of self-assembled monolayer-like films consisting of thiolated cyclodextrin on gold substrate and a characterization by using secondary ion mass spectrometry. The short (1 min) and long (1 h) time preparations of self-assembled monolayer-like films, resulting in submonolayer and monolayer regimes, are investigated, respectively. The observed species of thiolated cyclodextrin (M as molecular ion) self-assembled monolayer-like films are assigned to three groups: AuxHySz clusters, fragments with origin in cyclodextrin molecule associated with Au, and molecular ions. The group of AuxHySz (x = 2-17, y = 0-2, z = 1-5) clusters have higher intensities than other species in the positive and even more in negative mass spectra. Interestingly, the dependence between the number of Au and S atoms shows that with the increasing size of AuxHySz clusters up to 11 Au atoms, the number of associated S atoms is also increasing and then decreasing. Molecular species as (M−S+H)Na+, (M+H)Na+, AuMNa+, (M2−S)Na+, and M2Na+ are determined, and also in cationized forms with K+. The intensities of thiolated cyclodextrin fragments at the long time preparation are approximately 10 times higher than the intensities of the same fragments observed at the short time. The largest observed ions in thiolated cyclodextrin self-assembled monolayer-like films are AuM2 and Au2M. The thiolated cyclodextrin molecular ions are compared with hexadecanethiol molecular ions in the form of AuxMw where the values of x and w are smaller for thiolated cyclodextrin than for hexadecanethiol. This result is supported with larger, more compact, and more stabile thiolated cyclodextrin molecule.  相似文献   

7.
Density-functional method PW91 has been selected to investigate the structural, electronic and magnetic properties of Au4M (M =Sc–Zn) clusters. Geometry optimisations show that the M atoms in the ground-state Au4M clusters favour the most highly coordinated position. The ground-state Au4M clusters possess a solid structure for M = Sc and Ti and a planar structure for M = V–Zn. The characteristic frequency of the doped clusters is much greater than that of pure gold cluster. The relative stability and chemical activity are analysed by means of the averaged binding energy and highest occupied molecular orbital and lowest unoccupied molecular orbital energy gap for the lowest energy Au4M clusters. It is found that the dopant atoms can enhance the thermal stability of the host cluster except for Zn atom. The Au4Ti, Au4Mn and Au4Zn clusters have relatively higher chemical stability. The vertical detachment energy, electron affinity and photoelectron spectrum are calculated and simulated theoretically for all the ground-state structures. The magnetism calculations reveal that the total magnetic moment of Au4M cluster is mainly localised on the M atom and vary from 0 to 5 μB by substituting an Au atom in Au5 cluster with different transition-metal atoms.  相似文献   

8.
197Au Mössbauer effect studies in the ternary gold alloys Li2AuX (X = Ga, In, Tl; Ge, Sn, Pb; Bi) and Li2Au2?xInx (1.0 ? x ? 1.75), all of which crystallize in the cubic NaTl structure, have been performed at 4.2 K. The isomer shifts derived from the single-line spectra have been correlated with the average Allred-Rochow electronegativity of the first three coordination spheres around the gold atoms, normalized to the number of outer electrons and corrected for the distance from the gold atom. The isomer shifts have also been correlated with structural data from X-ray diffraction studies. Results of Dirac-Fock atomic structure calculations have been taken into account in discussing the possible valence electron configurations of gold. It is suggested that substantial 5d-6s mixing occurs with nearly matching charge compensation and additional 5d depletion through an interaction of the 5d band of gold with host orbitals of proper symmetry. A net charge flow off the gold sites appears in every case.  相似文献   

9.
Anticancer character of gold cluster has been indicated through its free radical scavenging properties. This is in contrast to its free radical promoting ability suggested by other workers. Here, we address this controversy by probing the stabilizing effects of Au3 cluster on RO? vs its impacts on RO–H bond dissociation enthalpy, at B3LYP/ LACVP+* level (R═H, methyl, ethyl, n‐propyl, i‐propyl, n‐butyl, t‐butyl, and phenyl). In the presence of Au3 cluster, bond dissociation enthalpy of O–H bond and the spin density at the RO? oxygen are reduced dramatically. These are clear evidences for both the Au3 facilitation of the RO–H bond breakage and its scavenging of RO? radical. Since O–Au anchoring bond is responsible for the interaction of Au3 cluster and ROH (or RO?), its nature was interpreted by means of the quantum theory of atoms in molecules and the natural bond orbital. The results indicate that O–Au bond is stronger and has more covalent character in RO?–Au3 than in ROH–Au3. The interaction of Au3 cluster with RO? is 1.5 to 3 times more than that with ROH. As a result, gold cluster scavenging property appears more prominent than its free radical initiation activity.  相似文献   

10.
The geometrical, electronic, and magnetic properties of small Au n V (n?=?1–8) clusters have been investigated using density functional theory at the PW91 level. An extensive structural search indicates that the V atom in low-energy Au n V isomers tends to occupy the most highly coordinated position and the ground-state configuration of Au n V clusters favors a planar structure. The substitution of a V atom for an Au atom in the Au n +1 cluster transforms the structure of the host cluster. Maximum peaks are observed for the ground-state Au n V clusters at n?=?2 and 4 for the size dependence of the second-order energy differences, implying that the Au2V and Au4V clusters possess relatively higher stability. The energy gap of the Au3V cluster is the largest of all the clusters. This may be ascribed to its highly symmetrical geometry and closed eight-electron shell. For ground-state clusters with the same spin multiplicity, as the clusters size increases, the vertical ionization potential decreases and the electron affinity increases. Magnetism calculations for the most stable Au n V clusters demonstrate that the V atom enhances the magnetic moment of the host clusters and carries most of the total magnetic moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号