首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
彭现科  许海波 《计算物理》2010,27(6):816-822
磷光增感屏的内禀性质对磷光增感屏的成像性能影响很大.基于米氏(Mie)散射理论,计算得到磷光增感屏在不同颗粒尺寸和不同颗粒堆积密度情况下的散射系数和吸收系数.然后利用Monte Carlo(MC)方法模拟了可见光光子在磷光增感屏Gd2O2S:Tb(GOS)内的散射和吸收事件,得到磷光增感屏内不同位置处的可见光收集效率.利用MCNP程序模拟X射线束在磷光增感屏内的能量沉积分布,得到了金属-磷光增感屏总的点扩展函数(PSF).结果表明,在兆伏X射线成像系统中,使用小颗粒尺寸和高堆积密度的GOS磷光屏,可以改善增感屏系统的空间分辨率.  相似文献   

2.
辐射照相系统中转换屏的分辨率研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 在高能X光辐射照相系统中,通常使用闪烁体材料的转换屏将X光转换为可见光进行探测。建立了转换屏空间分辨率的计算模型,模拟了转换屏的空间分辨率随屏的厚度、材料及X光子能量的变化关系,为系统的设计提供了参数。  相似文献   

3.
研制了一通用的Monte Carlo程序来研究X射线增感屏以及成象系统的性能,该程序主要包括三部分,分别描述了所发生的相应的物理过程:X射线的散射和吸收,次级电子的作用及可见光子的扩散,对程序进行了验证,对于一种Gd2O2S:Tb增感屏,计算了其在不同入射X射线能量下的点扩散函数。  相似文献   

4.
X射线增感屏的图象信息传输特性分析   总被引:1,自引:0,他引:1  
本文采用Monte Carlo方法详细模拟了不同能量光子与增感屏的作用过程,对于一种稀土(Gd2O2S:Tb)增感屏,计算了出射可见光子数的概率分布、平均出射光子数、统计因子、X射线检测效率以及DQE等.增感屏出射可见光子数的概率分布曲线均有三个峰,随着入射X射线能量的增加,各峰之间距离增大,相对强弱对比增大;其余各曲线在Gd原子K壳层结合能(50.24keV)附近,均有突变.这些结果提供了增感屏图象信息传输性能的基本参数,为深入研究增感屏及成象系统的量子噪音传输特性提供指导.  相似文献   

5.
在X光图像探测系统中,通常采用把X光转换为可见光、对可见光进行探测的方法来完成对X光的探测。在转换过程中,一般采用各种类型、结构的荧光屏来完成将X光转换为可见光的过程,而在高能X光的探测系统中,则常采用量子效率高、原子序数大的材料如CsI:T1晶体作为转换屏。由于转换屏存在一定的厚度,所发出的可见光将会在转换屏内部进行全方位的传播,一部分照射到转换屏背底的可见光被散射后进入图像记录系统,  相似文献   

6.
基于激光尾场加速电子的高能X射线源具有高光子能量与小源尺寸的特点,在高空间分辨无损检测方面发挥着十分重要的作用.在X光机上测量了CsI针状闪烁屏、锗酸铋(BGO)闪烁阵列与DRZ闪烁屏的本征空间分辨率,并模拟了三类探测器对高能X射线的能量沉积响应,其中CsI针状闪烁屏的空间分辨率高达8.7 lp/mm.采用Ta转换靶产生的高能X射线开展透视照相,能够分辨最高面密度33.0 g/cm~2的两层客体结构.开展了X射线照相、X射线与电子混合照相以及电子照相三种情况的比对实验,在X射线产额不足或探测效率不够情况下采用X射线与电子混合透视照相的方案,以牺牲对比度为代价,能较大程度地提高图像信号强度.  相似文献   

7.
用于高能X光转换的掺Tb3+硅酸盐发光玻璃性能研究   总被引:2,自引:0,他引:2  
在高能的数字X射线成像系统中使用的X光-可见光转换屏具有相当重要的作用,直接影响成像系统的性能。针对特殊用途研制的一种掺Tb^3 硅酸盐发光玻璃转换屏.可用于能量高达30McV的γ光子的成像探测:在百keV级的低能X光作用下的空间分辨力与301型发光玻璃相当.而在能量高达12MeV X光的照射下,其空间分辨力不低于1.51p/mm,发光效率约为301型发光玻璃的3倍.并对发光玻璃的相关性能与其组成进行了实验研究,给出了相应的测量结果。  相似文献   

8.
3333lp/mm X射线透射光栅的研制   总被引:2,自引:1,他引:1  
针对X射线透射光栅摄谱仪中的高线密度光栅,研究了采用电子束曝光和X射线曝光技术结合制作高线密度X射线透射光栅的工艺技术.首先利用电子束曝光和微电镀技术在镂空的薄膜上制备母光栅X射线掩模版,然后利用X射线曝光和微电镀技术小批量复制光栅.在国内首次完成了3333lp/mm X射线透射光栅的研制,栅线宽度为150nm,周期为300nm,金吸收体厚度为500nm.衍射效率标定的结果表明,该光栅的占空比合理、侧壁陡直,具有良好的色散特性,能够满足空间探测、同步辐射和变等离子诊断等多个领域的应用.  相似文献   

9.
MeV级脉冲辐射的高时间分辨测量是惯性约束核聚变诊断领域迫切需要解决的难题,国际上尚无成熟的解决方案.利用脉冲辐射对半导体折射率的超快调制效应,有望建立新的解决方案.为研究体材料半导体折射率对MeV级脉冲辐射的响应规律,分析了系统输出与入射辐射强度的对应关系,分析了基于半导体折射率变化测量MeV级脉冲辐射系统的时间分辨的影响因素.基于自由载流子折射率调制原理,建立了半导体材料在MeV级脉冲辐射作用下折射率调制测量系统,整个系统的时间分辨1 ns.在最大能量为0.2 MeV的电子束和X射线束轰击下,本征GaAs折射率恢复时间约30 ns,比可见光激发下要长,分析其原因是高能激发下GaAs内部陷阱参与了载流子复合过程.X射线光子束轰击下,折射率建立时间比电子束轰击下长,光子沉积能量产生过剩载流子的时间过程可达到ns量级.基于建立的系统和分析方法,可对其他半导体在伽马脉冲辐射或电子束辐射作用下折射率变化开展系统的研究,为建立实际的可用于MeV级脉冲辐射测量的快响应探测系统奠定了基础.  相似文献   

10.
将门控分幅相机与快闪烁晶体结合,构成时间分辨X射线诊断系统,对神龙一号直线感应加速器产生的高能脉冲X射线源焦斑进行了测量,在时间间隔为10 ns的情况下,获得了焦斑尺寸随时间的变化曲线。在此基础上,设计了单像素尺寸为0.78 mm×0.78 mm的LYSO闪烁晶体阵列,并进行了X射线照射晶体阵列发光的初步实验,结果表明该阵列可用于高能X射线源焦斑的时间分辨诊断,并能显著提高成像的空间分辨力。  相似文献   

11.
密度高、成像分辨率高、成像速度快的X射线数字成像检测需要高能微焦点大剂量X射线源,高品质电子源是实现这一X射线源的关键手段。基于中国工程物理研究院太赫兹自由电子激光的主加速器,验证了低发射度、低能散度的高亮度电子束实现高能微焦点的可行性,得到电子束半高全宽尺寸小于70μm的9 MeV微焦点,并初步开展成像实验,双丝像质计焦斑清晰分辨9D号丝,丝直径0.13 mm。  相似文献   

12.
In order to easily measure the beam spot size of high energy electron accelerators with internal target enclosed,a real–time system, based on thick pinhole imaging technique, is employed. The experimental result on a 15MeV electron linear accelerator is also presented. In this paper the principle of thick pinhole imaging and the processing of data are introduced. The usual "sandwich" method needs to develop X-ray films, while debugging the accelerator parameters it will take a lot of time. On the contrary, X–ray pinhole imaging method can make a real–time measuring: as the accelerator parameters change, we can observe the beam profile's variation on the computer screen. Then when debugging we can have a definite object in view, and adjust the accelerator parameters more efficiently.  相似文献   

13.
基于涡旋光照明的暗场数字全息显微方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于涡旋光照明的暗场数字全息显微方法. 从理论上阐述了涡旋光环形照明原理和暗场数字全息显微原理, 分析了涡旋光的准无衍射特性对成像的影响; 搭建了相应的数字全息显微成像系统, 采用690 nm的聚苯乙烯小球作为实验样品; 最后通过对小球明暗场下数字全息显微再现像的分析对比, 证明该方法可以有效地提高数字全息系统的分辨率, 同时增强了再现像的对比度. 关键词: 全息 暗场数字全息显微 涡旋光 分辨率  相似文献   

14.
无箔二极管强流电子束空间密度分布初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过在强磁场条件下,利用环形刀口石墨阴极(刀口尺寸38~39mm)开展电子束轰击收集极内表面铜箔和垂直轰击金属靶片实验,对无箔二极管中电子束的空间密度分布进行了初步研究,并对其产生原因进行了分析。研究结果表明,电子束径向分布在37.2~40.2mm,存在密度较高区域(38.8~39.4mm)和密度最大值点(39.2mm),且均偏向于阴极外侧。无箔二极管环形阴极爆炸发射产生电子束的径向密度分布可用偏态分布近似。  相似文献   

15.
郭博  刘得翔  吴双华  马跃  华剑飞  鲁巍 《强激光与粒子束》2021,33(7):074001-1-074001-4
发展微焦点高能X射线源技术是实现高精度高能工业CT突破的关键,基于激光尾波加速驱动高能轫致辐射源开展了微焦点高能X射线源产生以及对涡轮叶片高能CT成像研究。利用一台20 TW钛蓝宝石超快超强激光器,通过电离注入的方式获得了(140±44)pC的高能电子束,并使用1.5 mm厚钨靶产生了累积源尺寸为25 μm的高能轫致辐射X射线。利用该微焦点高能X射线源,采用基于压缩感知的CT重建算法,在获取较少角度投影(31个角度)的情况下,获得了对涡轮叶片叶榫结构的CT重建。  相似文献   

16.
荣锋  谢艳娜  邰雪凤  耿磊 《物理学报》2017,66(1):18701-018701
X射线光栅相衬成像存在系统复杂、成像效率低、步进精度要求高、光栅加工难度大等问题.本文设计了一种双能阵列X射线源和双能分析光栅,并应用于X射线光栅相衬成像,提出了一种双能X射线光栅相衬成像系统,阐述了该成像系统的成像原理和相位信息提取方法.提出的成像系统不需要精密步进平台,精简了成像系统,避免了步进误差导致的成像质量降低问题;两次曝光就可以成像,提高了成像效率;双能阵列X射线源、双能分析光栅的应用避免了源光栅、分析光栅难以加工的问题.对提出的成像系统及其相位提取方法进行了仿真,仿真结果显示成像系统可以正常成像,提取到的检测样本的X射线相衬成像相位一阶导数分布与相关文献实验所得结果一致.  相似文献   

17.
通过针孔成像法得到X光源强度空间分布图像,直接读取图像数据得到X光源的半高宽焦斑(FWHM)尺寸,对图像数据进行傅里叶变换得到调制传递函数,并计算得到X光源的等效焦斑尺寸(50%MTF)。应用针孔成像法测量多脉冲电子直线感应加速器产生的X光源焦斑尺寸,测量结果表明,加速器性能稳定。定义焦斑形状因子参数并用于描述X光源分布,结果表明,该加速器X光源分布在高斯分布和本涅特分布之间变化。  相似文献   

18.
胡浩丰  王晓雷  李智磊  张楠  翟宏琛 《物理学报》2009,58(11):7662-7667
采用脉冲数字显微全息技术,对50 fs单脉冲激光烧蚀铝靶过程中的物质喷射以及等离子体演化的动态过程进行了实验研究,获得了高时空分辨的动态数字全息图.由全息图观察到了热弹力波引起的二次喷射现象,并且报道了大延迟下喷射物质对400 nm探测光所引起的干涉条纹的反常移动现象.通过对全息图进行数字再现,得到了不同延迟下探测光穿过等离子体后的二维相位分布,并运用逆Abel变换算法获得了等离子体折射率以及等效电子密度的时空演化动态过程.根据实验以及计算所得到的有关于喷射物的光学性质,对喷射物的结构和成分进行了分析. 关键词: 脉冲数字全息 飞秒激光烧蚀 超快时间分辨 等离子体  相似文献   

19.
何辉  禹海军  王毅  戴文华 《强激光与粒子束》2019,31(12):125102-1-125102-5
对4 MeV闪光X光机的轫致辐射靶参数进行了设计和模拟计算。利用蒙特卡罗程序,计算得到当轫致辐射靶的有效钽靶材厚度约为0.6 mm时,靶正前方1 m处产生的单脉冲X光的照射量值最大,可以达到约2.86×10-3 C/kg,满足4 MeV闪光X光机对其单脉冲X光的设计要求。对不同能量下的单脉冲电子束加载在轫致辐射靶上的能量沉积密度进行了计算和比较,分析研究了不同结构下的靶破坏,结果表明:轫致辐射靶采用叠靶结构的钽靶能够满足4 MeV闪光机的实验需求。  相似文献   

20.
王毅  李勤  李天涛 《强激光与粒子束》2013,25(11):3017-3020
针对高能强流电子束轰击高Z靶产生的X射线的能谱测量问题,采用蒙特卡罗方法进行成像模拟研究。高能X射线能谱通常由对X射线经过衰减体的直穿透射率曲线进行解谱获得。设计了带多准直孔的截锥体模型,在单次模拟成像中获得完整的衰减透射率曲线,有效避免了散射光子对透射率曲线以及X射线能谱重建的影响。成像面采用非均匀划分网格计数,将大部分探测计数点集中于各准直孔出口处,保证关注区域模拟成像的精细度,同时减少总体计算时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号