首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Resonant second harmonic generation by a Gaussian laser beam in a rippled density plasma is studied using the moment theory approach. The nonlinearity arises through the relativistic mass effect and ponderomotive forces. The laser beam creates a plasma channel and gives rise to electron density perturbation at the laser frequency. The density perturbation beats with electron quiver velocity to produce second harmonics. The ripple provides phase matching and makes the process a resonant one. The second harmonic power efficiency is increased effectively with density ripple. Self-focusing causes enhancement in the efficiency of harmonic generation.  相似文献   

2.
This paper presents a theoretical investigation of the propagation characteristics of a q‐Gaussian laser beam propagating through a plasma channel created by the ignitor‐heater technique. The ignitor beam creates the plasma by tunnel‐ionization of air. The heater beam heats the plasma electrons and establishes a parabolic channel. The third beam (q‐Gaussian beam) is guided in the plasma channel under the combined effects of density non‐uniformity and non‐uniform ohmic heating of the plasma channel. Numerical solutions of the non‐linear Schrodinger wave equation (NSWE) for the fields of laser beams are obtained with the help of the moment theory approach. Particular emphasis is placed on the dynamical variations of the spot size of the laser beams and the longitudinal phase shift of the guided beam with the distance of propagation.  相似文献   

3.
《Optik》2014,125(24):7198-7202
In the present paper, laser pulse distortion/breakup and the effect of the plasma channel on the laser propagation through the collisional plasma have been studied by using moment theory approach. Second order nonlinear differential equations of the beam width parameter have been derived for the propagation of the laser through uniform homogenous plasma and preformed plasma channel having parabolic density profile. Differential equations of beam width parameter have been solved numerically using Runge Kutta method. It has been observed from analysis that when the laser pulse propagates through the homogenous plasma, the low intensity front and rear parts of the laser get defocused/diffracted and the high intensity central/main portion of the laser pulse gets self-guided. As a result of this, the laser pulse gets distorted. This distortion of the laser has not been observed when the laser pulse is propagated through the plasma channel having density minimum at the axis and maximum at the edges. The laser pulse is guided as a whole, even the low intensity front and rear parts of the laser are also guided. Therefore, the plasma channel is useful to prevent the distortion/breakup of the laser.  相似文献   

4.
激光通道传输热特性对远场光束质量的影响   总被引:3,自引:1,他引:3       下载免费PDF全文
 通过仿真计算分析了激光在光束控制系统通道内传输所产生的热效应及其对远场光束质量的影响。激光传播由近轴波方程描述,用快速傅里叶变换技术求解;激光热效应引起的流场密度变化采用完全Navier-Stokes方程计算。计算给出了不同波长、不同吸收系数条件下的远场光斑情况。计算结果表明,在典型的工作条件和状态下,较高能量激光在光束控制系统通道内产生的热效应影响不容忽视,它会明显降低远场目标处的能量集中度,增大光斑的发散。  相似文献   

5.
周泰斗  梁小宝  李超  黄志华  封建胜  赵磊  王建军  景峰 《物理学报》2017,66(8):84204-084204
体光栅光谱组束是获得高功率激光输出的一种有效途径.在有限的可用带宽内,光谱通道间隔影响着组束光束数目以及最终的高功率组束输出.采用耦合波理论,建立了一个两通道高功率光谱组束模型.通过优化体光栅光谱通道间隔,可放宽对组束子束线宽和功率的限制,组束功率可大幅提升而光谱密度并无显著下降.基于此,实验上获得了2.5 kW组束输出,绝对效率超过85%,通道间隔5 nm,光谱密度为0.51kW/nm.组束功率1 kW时,组束输出能保持好的光束质量;组束功率1.5kW时光束质量恶化较明显,通过分析发现,组束光束质量的恶化主要受限于体光栅的色散及高功率下体光栅复杂的热畸变.  相似文献   

6.
We theoretically investigate the lifetime of self-guided plasma channel in air by launching an auxiliary delayed long-pulsed laser beam following an ultrashort laser. A detailed model makes the electron-ion recombination, the attachment of electrons on neutral particles, and particularly the impact ionization and electron-detachment mechanism incorporate. The calculated results show that the temporal evolution of electron density is greatly flattened and broadened. When the auxiliary laser intensity exceeds the threshold 3.32 × 10^4 Wcm^-2, the channel lifetime is distinctly prolonged from nanosecond to microsecond, or even longer due to the electrical field enhancement. Furthermore, with the laser intensity up to 109 Wcm^-2, the impact ionization overwhelms the detachment in effect. Thus, it is an effective way to extend the channel lifetime and provides a real opportunity for applications.  相似文献   

7.
The propagation characteristics of an intense laser beam in a preformed plasma channel with the flat-bottom leaky density profile are investigated in detail. The evolution equation of the laser spot size is derived by employing variational technique. Seven propagation modes of the laser spot size are identified and some numerical results are presented. By comparison, we find that the results in this Letter may be more realistic since the flat-bottom leaky plasma channel comes closer to the practical plasma channel.  相似文献   

8.
1IntroducionThereiScurrentlymuhinterestintheinteractionofhighintensityultrashortlaserpulseswhhplasIna.ThisispartiyduetoaVallabilityoflaserscaPableofdeliveriflgintensihesaboVe1o"WcmzandtheadvntofthefastightorconePtinthecontextofinertialcoofnementfuAn.ThkeyconceptofthefastwttionistoheatthecomressedcorebythesuPrathermalelectronsandtheenergeticbogeneratedbyaveryintensepulse,afterthemainlaserpulsehascomPletedtheimPIosdri.Toachievethis,itisneededthatachannelingintenselaserpulsepenetratesasclose…  相似文献   

9.
Two-dimensional particle simulation is carried out to study the interaction between a high-intensity finite-size spot laser beam and a plasma with linear density profile. The laser is allowed to propagate in underdense corona until it is cut off near the critical surface. The intense laser can drive various instabilities through particle collective motion and result in electron heating,while relativistic effect and ponderomotive force can bring strong energy absorption and electron heating in the overdense region. As the laser beam is nonuniform in the transverse direction,a density channel forms and hole boring effect occurs as a result of strong ponderomotive force pushing particle outwards. These processes can be investigated well by particle simulation.  相似文献   

10.
11.
In the present work, we investigate the distributed regimes of an intense laser beam in a self-consistent plasma channel. As the intensity of the laser beam increases, the relativistic mass effect as well as the ponderomotive expulsion of electrons modifies the dielectric function of the medium due to which the medium exhibits nonlinearity. Based on Wentzel–Kramers–Brillouin and paraxial ray theory, the steady-state solution of an intense, Gaussian electromagnetic beam is studied. A differential equation of the beamwidth parameter with the distance of propagation is derived, including the effects of relativistic self-focusing (SF) and ponderomotive self-channeling. The nature of propagation and radial dynamics of the beam in plasma depend on the power, width of the beam, and Ω p, the ratio of plasma to wave frequency. For a given value of Ω p (<1), the distribution regimes have been obtained in beampower–beamwidth plane, characterizing the regimes of propagation as steady divergence, oscillatory divergence, and SF. The related focusing parameters are optimized introducing plasma density ramp function, and spot size of the laser beam is analyzed for inhomogeneous plasma. This results in overcoming the diffraction and guiding the laser beam over long distance. Numerical computations are performed for typical parameters of relativistic laser–plasma interaction studies.  相似文献   

12.
发散角过大是制约超强激光与固体靶相互作用加速产生高能质子束应用的一个重大物理难题.本文提出了一种结构化的通道靶型,与超强激光相互作用可提高质子束的发散特性,通道壁上产生的横向电荷分离静电场可对质子有效聚焦.采用二维particle-in-cell粒子模拟程序对激光通道靶相互作用过程进行了研究,分析了加速质子束的性能特点.模拟结果表明,与传统平面靶相比,通道靶可以在不过多损失能量的情况下产生具有更好准直性的质子束,尤其当通道靶的直径与激光焦斑尺寸和质子源尺寸相当时,横向静电场能够有效聚焦质子束,并且可保证相对较高的激光能量利用率.  相似文献   

13.
Efficient power scaling of laser radiation by spectral beam combining   总被引:1,自引:0,他引:1  
The possibility of achieving multikilowatt laser radiation by spectrally combining beams using volume Bragg gratings (VBGs) is shown. The VBGs recorded in a photothermorefractive glass exhibit long-term stability of all its parameters in high-power laser beams with power density >1 MW/cm2 in the cw beam of total power on a kilowatt level. We consider an architecture-specific beam-combining scheme and address the cross-talk minimization problem based on optimal channel positioning. Five-channel high efficiency spectral beam combining resulted in a >750 W near-diffraction-limited cw beam has been demonstrated experimentally.  相似文献   

14.
杨大鹏  李苏宇  姜远飞  陈安民  金明星 《物理学报》2017,66(11):115201-115201
研究了飞秒激光成丝诱导铜击穿光谱,利用光发射光谱对产生的铜等离子体光谱强度沿着丝长度进行了测量,获得了在不同样品与聚焦透镜间距离的Cu(I)的强度分布.结果显示,由于强度钳箍效应成丝诱导的光谱在较大的透镜样品间距离范围内有较强的辐射强度.另外,利用玻尔兹曼图和斯塔克展宽计算了整个成丝繁衍距离中Cu等离子体温度和电子密度.  相似文献   

15.
We investigate the formation of collisionless shocks along the spatial profile of a Gaussian laser beam propagating in nonlocal nonlinear media. For defocusing nonlinearity the shock survives the smoothing effect of the nonlocal response, though its dynamics is qualitatively affected by the latter, whereas for focusing nonlinearity it dominates over filamentation. The patterns observed in a thermal defocusing medium are interpreted in the framework of our theory.  相似文献   

16.
The second-harmonic generation of an intense self-guided right circularly polarized laser beam in a magnetized plasma is investigated. The laser imparts oscillatory velocity to electrons and exerts a radial ponderomotive force on them to create a depleted density channel. The critical power for self-focusing shows huge reduction as electron cyclotron frequency approaches the laser frequency (/spl omega//sub c/ /spl rarr/ /spl omega/). In the presence of the self-created radial density gradient, the laser drives a density perturbation at the fundamental frequency. The density perturbation beats with the oscillatory velocity to produce a second harmonic current density, driving second harmonic radiation copropagating with the laser. The second harmonic, however, is azimuthally asymmetric with /spl theta/-variation as exp(i/spl theta/). Its amplitude shows resonant enhancement as /spl omega//sub c/ /spl rarr/ /spl omega/.  相似文献   

17.
In a conventional inverse Cherenkov accelerator (ICA), the background neutral gas provides the necessary dispersion to maintain the synchronism between the drive laser and the accelerated electrons. A laser-driven ICA is susceptible to diffraction, and the acceleration length is limited to approximately a Rayleigh range (for a Gaussian beam). In this paper, an ICA configuration is proposed that avoids the laser diffraction limitation by employing a preformed plasma channel. It is shown that a radially polarized laser beam can be optically guided if the plasma density increases with radius-like r2. Expressions for the guided axial and radial components of the laser field are derived, and a numerical example is discussed  相似文献   

18.
S.C. Pradhan  U. Mandal 《Physics letters. A》2013,377(34-36):2154-2163
In this Letter, finite element model is developed to study the effect of nonlocal parameter in the radial structural response of carbon nanotubes. Timoshenko beam model is employed. The influence of nonlocal parameter in the radial direction due to interaction of atoms is defined as the radial nonlocal effect. It is found that there is significant influence of radial nonlocal effect on the structural response of the carbon nanotubes.  相似文献   

19.
In this work we evaluate the interaction of high intense laser beam with a steepened density profile. During laser interaction with underdense plasma by freely expanding plasma regime, modification of density profile is possible. In this paper we have investigated the ultra short laser pulse interaction with nonisothermal and collisionless plasma. We consider self–focusing as an effective nonlinear phenomenon that tends to increase when the laser power is more than critical rate. By leading the expanded plasma to a preferred location near to critical density, laser reflection is obtained, so the density profile will be locally steepened. The electromagnetic fields are evaluated in this new profile. We show the amplitude and period of electrical field oscillation are increased by reducing the steepened scale length. Also our numerical results identify that by reducing the steepened scale length, the electrical field is increased to wave breaking threshold limit. This high gradient electrical field causes the effective beam loading during the wave breaking phenomenon. The wave breaking can be the initial point for other acceleration regime as cavity or channel guiding regime. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号