首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
本文采用发射光谱法诊断了大气压下Ar气、SiCl4及H2气混合气体(Ar/SiCl4/H2)射频放电等离子体射流特性.利用Si原子谱线强度计算了电子激发温度并以此估算了Si原子数密度,研究了射频功率及气体流量对电子激发温度和Si原子数密度以及SiCl4解离率的作用. 关键词: 大气压等离子体射流 发射光谱 电子激发温度 多晶硅薄膜沉积  相似文献   

2.
黄松  辛煜  宁兆元 《中国物理》2005,14(8):1608-1612
在射频输入功率为400W,气压为0.8Pa的条件下,使用光强标定的发射光谱方法研究了感应耦合H2/C4F8等离子体中CF, CF2, H和F基团的相对密度随流量比R=H2/(H2+C4F8)的变化情况,而HF基团相对密度的变化由四级质谱仪探测得到。结果表明等离子体活性先随着R的增加而升高,然后随着R的进一步增加而下降。在流量比从0逐渐上升到0.625的过程中,CF和CF2基团的相对密度不断降低。实验中测得的CF基团的相对密度[CF]与理论计算得到的[CF]有很好的一致性说明了电子与CF2基团的碰撞反应是CF基团产生的主要原因。文中还讨论了HF基团。  相似文献   

3.
空气放电非平衡等离子体的模拟计算   总被引:1,自引:0,他引:1       下载免费PDF全文
 基于空气放电非平衡等离子体动力学,对空气放电进行了数值计算,分析了放电后等离子体中的主要粒子(N2(v6),N2(A3),O2(a1),O和O3)数密度随起始温度、电子数密度和约化场强的变化趋势。计算结果表明,随着初始温度的升高,空气放电产生的粒子数密度增加。温度为300 K时,放电产生的O原子数密度最大值约为4.90×7 cm-3,而当温度升高到400 K和500 K时,O原子数密度的最大值则相应地增加到5.2×1010 cm-3和5.51×1010 cm-3。约化场强的影响与温度类似,其中氮气的振动激发态N2(v6)数密度随约化场强的变化幅度不明显。电子数密度增加,粒子数密度大幅增加,氮分子的激发态N2(A3)粒子数密度与电子数密度保持严格的线性关系。  相似文献   

4.
李艳阳  杨仕娥  陈永生  周建朋  李新利  卢景霄 《物理学报》2012,61(16):165203-165203
采用高H2稀释的SiH4等离子体放电, 特别是甚高频等离子体增强化学气相沉积技术是当前高速制备优质微晶硅薄膜的主流方法. 尽管在实验上取得了很大的突破, 但其沉积机理一直是研究的热点和难点. 本文通过建立二维时变的轴对称模型,在75 MHz放电频率下, 对与微晶硅沉积非常相关的甚高频电容耦合氢等离子体放电进行了数值模拟, 研究了沉积参数对等离子体特性的影响, 并与光发射谱(OES)在线监测结果进行了比较. 结果表明: 电子浓度 ne在等离子体体层中间区域最大, 而电子温度 TeHαHβ的数密度在体层和鞘层界面附近取极大值; 当气压从1 Torr (1 Torr=133.322 Pa)增大至5 Torr时, 等离子体电势单调降低, 在体层中间区域 ne先快速增大然后逐渐减小, Te先下降后趋于稳定; 随着放电功率从30 W增大到70 W, 电子浓度 neHαHβ的数密度均线性增大, 而电子温度 Te基本保持不变; OES在线分析结果与模拟结果符合得很好.  相似文献   

5.
王益军  王六定  杨敏  刘光清  严诚 《物理学报》2010,59(7):4950-4954
运用基于第一性原理的密度泛函理论,系统研究了处于外电场中分层掺B并吸附不同数目H2O碳纳米管体系的结构稳定性和电子场发射性能. 研究表明:第3层掺B并吸附5个H2O的B3CNT+5H2O体系结构最稳定,管帽处Mulliken电荷最密集,尤其与单独掺B的B3CNT和单独吸附H2O的B3CNT+5H2O相比,其Fermi能级处态密度分别  相似文献   

6.
兰宇丹  何立明  丁伟  王峰 《中国物理 B》2010,19(4):2617-2621
本文对不同初始温度下,H2/O2混合物等离子体中主要粒子随时间发展的演化规律进行了数值模拟,得到了放电后等离子体中主要带电粒子和中性粒子密度随时间的变化规律.计算结果表明,H2/O2混合物等离子体中主要活性粒子密度随时间的增加减小,化学反应达到平衡所需的时间随初始温度升高逐渐减少.  相似文献   

7.
本文通过密度泛函方法计算6H-SiC(0001)表面对氧分子和水分子的吸附. 在6H-SiC(0001)表面上吸附的O2分子自发地解离成O*,并被吸收在C与Si原子之间的空位上. 吸附的H2O自发地分解成OH*和H*,它们都被吸附在Si原子的顶部,OH*进一步可逆地转化为O*和H*. H*可以使Si悬键饱和并改变O*的吸附类型,并进一步稳定6H-SiC(0001)表面并防止其转变为SiO2.  相似文献   

8.
本文利用CNDO/2量子化学理论方法,对P和B原子在四面体配位的Si46和Sl46H60H4*原子集团中置换Si原子前后的原子集团能量和能态分布变化进行了计算.计算结果表明:1)在Si46H60H4*原子集团中用P(或B)置换引Si原子后在能隙中明显地出现施主(或受主)态子带,同样在Si46相似文献   

9.
对新合成的化合物氯化苯并咪唑镧HCl4·[C7H6N2(H2O)2]2La及其LaCl3·5H2O的水溶液进行了三维荧光光谱测定,讨论了HCl4·[C7H6N2(H2O)2]2La在不同波长的光激发下的荧光特性,荧光强度与浓度的关系及标题化合物的上转换荧光,即在540nm绿光的激发下可以获得紫外光(290nm)和近紫外光(360nm).  相似文献   

10.
用电子密度泛函理论研究了N-质子化corrole(H4Cor+)和meso位芳基取代质子化corroles(H4TPC+、H4TpFPC+和H4TdCPC+)的几何构型、内消旋反应机理以及电子光谱. 结果表明,这些化合物均有两种稳定构型(势能面极小),一个为C2对称性的S1(最稳定构型),另一为C1对称性的S2,其中S1的能量比S2低约15.8~18.5 kJ/mol.S1和S2的corrole环都呈现明显的面外扭曲变形. 手性S1的两个对映异构体之间的转化是一个以S2为中间态的多步过程. 用TDDFT计算了它们的紫外可见电子吸收光谱和圆二色谱(ECD). 与H4Cor+相比,H4TPC+、H4TpFPC+和H4TdCPC+的紫外可见吸收都发生了明显红移,且它们的Q带都因芳基取代基与corrole环之间的π-π共轭而明显增强. 计算表明,质子化corrole的若干相邻电子跃迁的旋转强度符号相反,表明ECD谱可能是研究其电子跃迁的有用工具.  相似文献   

11.
For a better understanding of the deposition mechanism of thin films in SiCl4 source gas, we have measured the spatial distributions of SiCln (n=0-2) radicals in SICl4 radio frequency glow discharge plasma utilizing a mass spectrometer equipped with a movable gas sampling apparatus. The experimental results demonstrate that the relative densities of SiCln (n=0-2) radicals have peak values at the position of 10 mm above the powered electrode along the axial direction; the relative densities of the Si and SiCIn (n=1, 2) radicals have peak values at the positions of 27mm and 7 mm away from the axis along the radial direction, respectively. Generally speaking, in the whole SICl4 plasma bulk region, the relative density of Si is one order of magnitude higher than that of SICl, and the relative density of SiCl is several times higher than that of SICl2. This reveals that Si and SiCl may be the primary growth precursors in forming thin films.  相似文献   

12.
The N2-H2 plasma gas mixture, generated in a 50?Hz pulsed dc discharge system with active screen cage, is characterized by optical emission spectroscopy (OES), as a function of gas pressure, the fractions of hydrogen and current density. The N2 dissociation degree and N atomic density was measured with actinometery where argon gas is used as actinometer. It was shown that the increase in hydrogen fraction enhances the dissociation of N2, until the maximum of 40%. The excitation temperature is determined from Ar-I emission line intensities by using the simple Boltzmann plot method. The dissociation fraction and excitation temperature is found to increase with hydrogen mixing in nitrogen plasma.  相似文献   

13.
In-situ germanium content monitoring and its characteristics in SiH4/GeH4/H2 plasmas was studied during hydrogenated amorphous silicon–germanium (a-SiGe:H) film depositions. Since an appropriate band-gap profiling in a-SiGe:H deposition is very important to achieve high efficiency solar cell, the accurate monitoring and control of Ge contents are required. In this work, we found the spectral intensity ratio of silicon atom (288.2 nm) and germanium atom (303.9 nm) emission has strong relation with Ge content in plasmas. In typical, band-gap energy of films was decreased with the increasing of gas flow ratio GeH4/SiH4. However, at different total flow rate of GeH4, the band-gap was different for same gas flow ratio cases because the Ge content in plasmas was changed due to the changes of electron temperature by hydrogen dilution. On the other hand, the emission intensity ratio Ge/Si detected the band-gap variation. Using this method, therefore, we measured and control Ge/Si to make a U-shape band-gap profile which was proved by an ellipsometer and Auger electron spectroscopy depth profile analysis.  相似文献   

14.
虞一青  辛煜  宁兆元 《中国物理 B》2011,20(1):15207-015207
This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.  相似文献   

15.
Optical emission spectroscopic studies were carried out to characterise the plasma leading to the estimation of two plasma parameters, electron density and temperature. These experiments were conducted on a 2 kJ plasma device which is equipped with squirrel cage electrode configuration enclosed in a glass vacuum chamber filled with hydrogen at a pressure of 5 mbar. Spectral emissions obtained from each flash were photographed in the region of 4000–6000 Å using one metre Czerny-Turner spectrograph cum monochromator. Detailed examination of the observed features showed that theH β andH λ lines of hydrogen showed significant broadening of the order of 35 Å FWHM which is due to Stark effect expected in high density plasmas. Further several atomic lines of Cu and Zn from the electrode material (brass) showed broadening which was due to quadratic Stark effect. A comparative study of the broadening of lines obtained in DC arc, hollow cathode and plasma focus was made. Electron density from Stark broadened hydrogen lines and quadratic Stark Coefficient C4 for the CuI and ZnI lines were evaluated. The excitation temperature was determined from the line intensity ratio method using CuI lines.  相似文献   

16.
《Current Applied Physics》2010,10(6):1456-1460
This work aims at investigation of the validity of the electron excitation temperature (Texc) by optical emission spectroscopy (OES) as an alternative diagnostic to the electron temperature (Te). The excitation and the electron temperatures were measured at a wide range of gas pressures and input powers in different plasmas such as capacitively-coupled, inductively-coupled, and magnetron direct current plasmas. As a result, both temperatures were found to decrease with an increase in pressure, whereas they not very dependent on power, indicating that Texc showed a tendency identical to that of Te as pressure and power were varied. This result suggests that Texc measurement can be an alternative diagnostic for Te measurement once the ratio of the two temperatures is found in advance through a calibration experiment especially for low pressure high electron density industrial processing plasmas in which probe measurements are limited.  相似文献   

17.
Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 discharge plasma was on-line diagnosed by optical emission spectra so as to characterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious error in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas. Supported by the National Natural Science Foundation of China (Grant Nos. 29776037 and 10675028) and the Science and Technology Development Foundation of SINOPEC (Grant No. X500005)  相似文献   

18.
60 MHz pulsed radio frequency (rf) source power and 2 MHz continuous wave rf bias power, were used for SiO2 etching masked with an amorphous carbon layer (ACL) in an Ar/C4F8/O2 gas mixture, and the effects of the frequency and duty ratio of the 60 MHz pulse rf power on the SiO2 etch characteristics were investigated. With decreasing duty ratio of the 60 MHz pulse rf power, not only the etch rate of SiO2 but also the etch rate of ACL was decreased, however, the etch selectivity of SiO2 over ACL was improved with decreasing the duty ratio. On the other hand, when the pulse frequency was varied at a constant duty ratio, no significant change in the etch rate and etch selectivity of both materials could be observed. The variation of the etch characteristics was believed to be related to the change in the gas dissociation characteristics caused by the change in the average electron temperature for different pulsing conditions. The improvement in the etch selectivity with the decrease of duty ratio, therefore, was related to the decreased gas dissociation of C4F8 by the decrease of average electron temperature and, which resulted in a change in composition of the fluorocarbon polymer on the etched materials surface from C–C rich to CF2 rich. With decreasing the duty ratio, not only the etch selectivity but also the improvement in the SiO2 etch profile could be observed.  相似文献   

19.
Trace rare gas optical emission spectroscopy (TRG-OES) is carried out to determine the excitation temperature, vibrational temperature, dissociation fraction and nitrogen (N) atom density in 50?Hz active screen cage nitrogen plasma, as a function of discharge parameters (current density and fill pressure) and hydrogen concentrations. The excitation temperature is determined from Ar–I emission lines and is found to increase with hydrogen mixing. In a similar fashion, the vibrational temperature of second positive system is determined and found to have increasing trend with hydrogen addition. The dissociation fraction increases with hydrogen concentration up to 40% H2 in the nitrogen plasma, so as the nitrogen atom density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号