首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of optically-induced random, anisotropic disorder on the magnetoresistance of a Al0.3Ga0.7As/ GaAs two-dimensional electron system by exposing the heterojunction to an asymmetric laser speckle pattern. Changes in the amplitude of the Shubnikov-de Haas oscillations can be explained in terms of easy and hard conductivity paths parallel and perpendicular to the long axis of the oval speckle grains. We also observe corresponding changes in the electron scattering rates.  相似文献   

2.
Hosein Eshghi 《Physics letters. A》2009,373(20):1773-1776
Experimental data for temperature dependence of electron transport properties in a bulk, low dislocation density, GaN sample at atmospheric pressure and 7.1 kbar have been presented. The data are representing a weak hydrostatic pressure dependence. Our quantitative analysis on its material parameters including: high and low dielectric constants (ε,εs), longitudinal and transverse optical phonons (ωLO,ωTO), and electronic effective mass show a small fractional change of −0.12,−0.14,0.05,0.058 and 0.089 (percent/kbar), respectively. These results are confirmed by the Hall-effect data analysis on the basis of charge neutrality condition and various scattering mechanisms.  相似文献   

3.
We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle φo. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads φo. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φo, without the electromagnetic flux though the ring.  相似文献   

4.
We discuss the mechanism of the anomalous Hall effect in a Rashba-Dresselhaus two-dimensional electron gas subjected to a homogeneous out-of-plane magnetization. On the basis of a systematic treatment of the kinetic equations for the spin-density matrix, results are derived for the dynamic Hall conductivity in a closed form. Its nonanalytic dependence on both the scattering time and the frequency of the applied electric field is discussed. Except for in a special Rashba-Dresselhaus model, there is a finite intrinsic anomalous Hall effect, which is extremely sensitive to short-range elastic scattering.  相似文献   

5.
The electric-tunable spin-independent magnetoresistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations on analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign.  相似文献   

6.
We have extended the balance equations to account for conduction-valence interband impact ionization (II) process induced by an intense terahertz (THz) electromagnetic irradiation in semiconductors, and applied them to study the II effect on electron transport and electron-hole pair generation-recombination rate in THz-driven InAs/AlSb heterojunctions (HJ). As many as needed multiphoton channels are self-consistently taken into account for yielding a given accuracy. The time evolution of transport state including THz-radiation-induced II process are monitored in details by an extensive time-dependent analysis. Two different physical stages, the quasi-steady state and the complete steady-state, are clearly identified from the present calculations. Intersubband electron transfer rate and net electron-hole generation rate are derived as functions of the THz radiation strength E ac for various radiation frequencies from f ac = 0.42 to 6 THz at lattice temperatures T = 6 K. It's indicated that the THz radiation with a larger E ac or a lower f ac, has a stronger effect on electron transport and II process. Qualitative agreement is obtained between the calculated electron-hole generation rate and the available experimental data for InAs/AlSb HJ's at T = 6 K. Received 24 May 2002 / Received in final form 26 August 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: jccao8@hotmail.com  相似文献   

7.
The photo-Hall effect in a new type of periodicp-n doping multilayer structures (superlattices) of GaAs grown by molecular beam epitaxy has been investigated. In these space charge systems electrons and holes are separated in real space. As a consequence, large deviations from thermal equilibrium become quasi-stable. Carrier generation by optical absorption occurs in these doping superlattices even at photon energies far below the gap of the homogeneous semiconductor material. The photoexcitation results in a strong enhancement of the conductivityparallel to the layers and in a substantial photovoltaic response. An increase in carrierconcentration as well as an increase in carriermobility both contribute to the observed enhancement of the conductivity under excitation. The absolute values of changes in free-carrier concentration are very large due to the manyfold active layers of the structure. The measured free-carrier mobilities depend on the population of the multilayer system. A reduction in mobility as compared to bulk material is found to be more pronounced in weakly populated systems. This finding is caused by the larger weight of the boundary regions of the total active layers where the free-carrier density is lower than the density of ionized impurities resulting in an enhanced impurity scattering.  相似文献   

8.
Ni81Fe19 and Co thin films have been fabricated and their transport properties have been investigated for potential applications in ultra sensitive magnetic field sensors. The Ni81Fe19 films exhibit an anisotropic magnetoresistance (AMR) of 2.5% with a coercivity 2.5 Oe and the Co films exhibit an AMR of 0.7% with coercivity 11 Oe. Large planar Hall effect magnetoresistance values at room temperature are reported for both cases. An unbalanced Wheatstone bridge model is proposed to describe quantitatively the observed experimental Planar Hall Effect data.  相似文献   

9.
We propose a Magnetoresistance device in a magnetically modulated two-dimensional electron gas, which can be realized experimentally by the deposition of two parallel ferromagnetic strips on the top and bottom of a semiconductor heterostructure. It is shown that there exists a significant transmission difference for electrons through the parallel and antiparallel magnetization configurations of such a device, which leads to a considerable magnetoresistance effect. It is also shown that the magnetoresistance ratio of the device depends greatly on the magnetic strength difference in the two delta barriers of the system.  相似文献   

10.
We present results on the Hall coefficient RH in the normal state for a GdBa2Cu3O7−δ/La0.75Sr0.25MnO3 bilayer and a La0.75Sr0.25MnO3 film grown by dc magnetron sputtering on (1 0 0) SrTiO3. We find that the electric transport on the bilayer can be qualitatively described using a simple parallel layers model. The GdBa2Cu3O7−δ layer presents a carrier density approximately equal to that reported for 7 − δ = 6.85 oxygen doping. Also we observe an unexpected presence of two Hall resistivity regimes, effects that may be associated with the internal magnetic field induced on the superconducting layer by the ferromagnetic layer.  相似文献   

11.
The microwave waveguide method for contactless determination of the electron mobility and conductivity of thin active layers is reported. The method is based on relative measurements of the magnetic field dependences of the derivative of the reflection coefficient with respect to the magnetic field from a semiconductor wafer bridging the waveguide.Experiments are performed on GaAs/AlGaAs heterostructures at microwave frequency = 36.4 GHz and liquid nitrogen temperature. For the analysis of the experimental data the theoretical basis for arbitrary frequencies is developed. The main advantage of the proposed method is that this method enables one to determine material parameters - mobility and conductivity - without careful calibration of the microwave system and does not require the accurate measurements of the absolute values of the reflection coefficient and phase of the reflected wave.  相似文献   

12.
Using the tight-binding Su--Schrieffer--Heeger model and a nonadiabatic dynamic evolution method, we study the dynamic processes of the charge injection and transport in a metal/two coupled conjugated polymer chains/metal structure. It is found that the charge interchain transport is determined by the strength of the electric field and the magnitude of the voltage bias applied on the metal electrode. The stronger electric field and the larger voltage bias are both in favour of the charge interchain transport.  相似文献   

13.
We theoretically investigate the giant magnetoresistance (GMR) effect in general magnetically modulated semiconductor nanosystems, which can be realized experimentally by depositing two parallel ferromagnetic strips on the top of a heterostructure. Here the exact magnetic profiles and arbitrary magnetization direction of ferromagnetic strips are emphasized. It is shown that a considerable GMR effect can be achieved in such nanosystems due to the significant transmission difference for electrons tunneling through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio is strongly influenced by the magnetization direction of ferromagnetic strips in nanosystems, thus possibly leading to tunable GMR devices.  相似文献   

14.
Spontaneous (SP) and piezoelectric (PZ) polarization effects on the intraband relaxation time for a wurtzite (WZ) GaN/AlGaN quantum well (QW) are investigated theoretically as functions of the sheet carrier density and well thickness. The self-consistent (SC) model with the SP and PZ polarizations shows that linewidths for carrier–carrier and carrier–phonon scatterings are significantly reduced compared to those for the flat-band (FB) model without SP and PZ polarization. In particular, line-widths for the e–h and h–e scatterings are reduced by about two orders of magnitude at a sheet carrier density as low as 2×1012 cm-2 compared to the case of the FB model. This is attributed to the decrease of the matrix element due to the spatial separation between electron and hole wave functions. In the case of the e–e and h–h scatterings, the reduction of linewidths is mainly attributed to the decrease of the scattering matrix element due to the increase of the inverse screening length. Linewidths for e–h and h–e scatterings gradually increase with the sheet carrier density since the screening field increases, while linewidths for the other scatterings are almost independent of the sheet carrier density. The SC model also shows that linewidths for the carrier–carrier and carrier–phonon scatterings are nearly, constant irrespective of well thickness except for e–h and h–e scatterings. In the case of e–h and h–e scatterings, linewidths greatly decrease with the well width because of the increase of the spatial separation of wave functions. Received in final version: 13 July 2000 / Accepted: 13 July 2000 / Published online: 16 August 2000  相似文献   

15.
Yu Liu  Lan-Lan Zhang 《Physics letters. A》2008,372(20):3729-3733
We report on a theoretical investigation of the giant magnetoresistance (GMR) effect in hybrid ferromagnetic-Schottky-metal and semiconductor nanosystem. Experimentally, this GMR device can be realized by the deposition of two ferromagnetic (FM) stripes and one Schottky normal metal (NM) in parallel way on the top of a semiconductor GaAs heterostructure. The GMR effect emanates from the significant transmission difference for electrons tunneling through parallel and antiparallel magnetization configurations of the device, and its magnetoresistance ratio (MR) can reach the order of 106%. Furthermore, it is also shown that the MR of the device depends strongly on the relative location of the Schottky NM stripe between two FM stripes.  相似文献   

16.
We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi energy corresponding to the depopulation of the upper spin subband. The energy scale associated with the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small angle scattering to be the dominant scattering mechanism our results agree with recent measurement on Si-MOSFET's in the vicinity of the metal-insulator transition. Received 11 July 2001  相似文献   

17.
The artificial control of grain-boundary resistance and its contribution to magnetic and magneto-transport properties in [Co(3 nm)/Bi(2.5 nm)/Co(3 nm)]Ir20Mn80(12 nm) thin films that exhibit exchange bias is studied. Transverse magnetoresistance (MR) loops exhibit a negative MR in thin films grown by magnetron sputtering on Si/SiNx(100 nm) substrates. This negative MR effect is of the giant-MR (GMR) type, although its magnitude is less than 1%. A considerable exchange bias (EB) effect is observed only at lower temperatures, where both, GMR and isothermal magnetization loops exhibit a shift of −600 Oe at 5 K.  相似文献   

18.
We report on the high-resolution optical Fourier-transform spectroscopy of the LiYF4:Tm3+ crystals. Splitting of several lines in the optical low-temperature polarized spectra was observed. We show that these splittings are caused by (i) the hyperfine interaction, (ii) the isotopic disorder in the lithium sublattice, and (iii) the interionic interaction between neighboring Tm ions. It is the first observation of the hyperfine splitting in the spectra of the Tm3+ ions in crystals. From the experimentally measured hyperfine splitting we evaluate the magnetic field at the thulium nucleus and calculate the magnetic g-factors of the excited crystal-field levels.  相似文献   

19.
We have obtained the universal conductance distribution of two-dimensional disordered systems in the strongly localized limit. This distribution is directly related to the Tracy-Widom distribution, which has recently appeared in many different problems. We first map a forward scattering paths model into a problem of directed random polymers previously solved. We show numerically that the same distribution also applies to other forward scattering paths models and to the Anderson model. We show that most of the electric current follows a preferential percolation-type path. The particular form of the distribution depends on the type of leads used to measure the conductance. The application of a moderate magnetic field changes the average conductance and the size of fluctuations, but not the distribution when properly scaled. Although the presence of magnetic field changes the universality class, we show that the conductance distribution in the strongly localized limit is the same for both classes.  相似文献   

20.
The optical conductivity of CuO2 (copper-oxygen) planes in p- and n-type cuprates thin films at various doping levels is deduced from highly accurate reflectivity data. The temperature dependence of the real part σ1 (ω) of this optical conductivity and the corresponding spectral weight allow to track the opening of a partial gap in the normal state of n-type Pr2−xCexCuO4 (PCCO) but not of p-type Bi2Sr2CaCu2O8+δ (BSCCO) cuprates. This is a clear difference between these two families of cuprates, which we briefly discuss. In BSCCO, the change of the electronic kinetic energy Ekin—deduced from the spectral weight—at the superconducting transition is found to cross over from a conventional BCS behavior (increase of Ekin below Tc) to an unconventional behavior (decrease of Ekin below Tc) as the free carrier density decreases. This behavior appears to be linked to the energy scale over which spectral weight is lost and goes into the superfluid condensate, hence may be related to Mott physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号