首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The stimulated emission spectrum of uniaxially strained p-Ge is presented. The energy spectrum of the states of a shallow acceptor in Ge under uniaxial compression is calculated. The threshold pressure at which the acceptor state split off from the ground state becomes resonant is found. The pressure dependence of the width of this resonant level is calculated. The stimulated emission lines are identified. In particular, it is shown that the principal emission peak corresponds to the transition of holes from the resonant 1s (1s r) state to the local p ±1 state. The probabilities of optical transitions are calculated. A mechanism of population inversion due to the intense resonant scattering of hot holes with an energy corresponding to the position of the 1s r level is proposed. Zh. éksp. Teor. Fiz. 115, 89–100 (January 1999)  相似文献   

2.
Summary We study the effective electron mass at the Fermi level in Kane-type semiconductors on the basis of fourth order in effective mass theory and taking into account the interactions of the conduction electrons, heavy holes, light holes and split-off holes, respectively. The results obtained are then compared to those derived on the basis of the well-known three-band Kane model. It is found, takingn-Hg1−x Cd x Te as an example, that the effective electron mass at the Fermi level in accordance with fourth-order model depends on the Fermi energy, magnetic quantum number and the electron spin respectively due to the influence of band nonparabolicity only. The dependence of effective mass on electron spin is due to spin-orbit splitting parameter of the valence band in three-band Kane model and the Fermi energy due to band nonparabolicity in two-band Kane model. The same mass exhibits an oscillatory magnetic-field dependence for all the band models as expected since the origin of oscillations in the effective mass in nonparabolic compounds is the same as that of the Shubnikov-de Hass oscillations. In addition, the corresponding results for parabolic energy bands have been obtained from the generalized expressions under certain limiting conditions.  相似文献   

3.
The efficiency of organic light-emitting devices (OLEDs) is closely related to the position and width of recombination zone (RCZ) in the emission layer. Based on the drift–diffusion theory of carrier motion in semiconductors, we developed a numerical model for the position and width of the RCZ in bipolar single layer OLEDs. The calculation results show that for a given operation voltage, the position and width of the RCZ are determined by the mobility difference of electrons and holes, and the energy barrier at the two contacts. When the anode and cathode contact are both ohmic, then RCZ will be near the electrode, from which the low-mobility carriers are injected, and the smaller the mobility difference, the wider the RCZ, and the width of RCZ will be maximal when the mobility of holes and electrons are equal. When the anode contact is Schottky, while the cathode contact is ohmic, then the position and width of RCZ will be determined by both the mobility difference and hole–injection energy barrier. When μ p<μ n, the RCZ will be at the anode side. When μ p>μ n, then RCZ will move away from the anode and become wider, with the increase of the hole injection barrier. For a given hole–injection barrier and mobility of holes and electrons, the position and width of RCZ change with the applied voltage.  相似文献   

4.
Quantum cyclotron resonance of two-dimensional holes in strained germanium layers of the periodic heterostructure Ge-Ge1−x Six has been observed and investigated for the first time. The results are compared with the data of electrophysical measurements in strong magnetic fields. A clear dependence of the magnitude of the longitudinal effective mass of the holes on the absolute magnitude of the elastic deformation of the germanium layers (splitting energy of the hole subbands) is observed. Fiz. Tverd. Tela (St. Petersburg) 39, 2096–2100 (November 1997)  相似文献   

5.
王丽国  申超  郑厚植  朱汇  赵建华 《中国物理 B》2011,20(10):100301-100301
This paper describes an n-i-p-i-n model heterostructure with a manganese (Mn)-doped p-type base region to check the stability of a positively charged manganese AMn+ centre with two holes weakly bound by a negatively charged 3d5(Mn) core of a local spin S=5/2 in the framework of the effective mass approximation near the Γ critical point (k~0). By including the carrier screening effect, the ground state energy and the binding energy of the second hole in the positively charged centre AMn+ are calculated within a hole concentration range from 1 × 1016 cm-3 to 1 × 1017 cm-3, which is achievable by biasing the structure under photo-excitation. For comparison, the ground-state energy of a single hole in the neutral AMn0 centre is calculated in the same concentration range. It turns out that the binding energy of the second hole in the AMn+ centre varies from 9.27 meV to 4.57 meV. We propose that the presence of the AMn+ centre can be examined by measuring the photoluminescence from recombination of electrons in the conduction band with the bound holes in the AMn+ centre since a high frequency dielectric constant of varepsilon =10.66 can be safely adopted in this case. The novel feature of the ability to tune the impurity level of the AMn+ centre makes it attractive for optically and electrically manipulating local magnetic spins in semiconductors.  相似文献   

6.
It is proposed that the charge transport across the SiO x layer at the interface SnO2/Si proceeds by a hopping mechanism. During heat treatment of the photovoltaic cells, in air, chemical reactions occur with O2/H2O, which lead to a drastic reduction of the density of hopping sites near the Si conduction band edge. The SiO x hopping sites of energy near the valence band edge are less affected by these chemical reactions. Thus, photogenerated holes can still pass the barrier while the dark current flow is strongly inhibited.  相似文献   

7.
The temperature T c of the Kosterlitz-Thouless transition to a superfluid state for a system of magnetoexcitons with spatially separated electrons e and holes h in coupled quantum wells is obtained as a function of magnetic field H and interlayer separation D. It is found that T c decreases as a function of H and D at fixed exciton density n ex as a result of an increase in the exciton magnetic mass. The highest Kosterlitz-Thouless transition temperature as a function of H increases (at small D) on account of an increase in the maximum magnetoexciton density n ex versus magnetic field, where n ex is determined by a competition between the magnetoexciton energy and the sum of the activation energies of incompressible Laughlin fluids of electrons and holes. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 5, 332–337 (10 September 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

8.
In this paper, we calculate the gravitational waveform from free test particles around Schwarzschild black holes immersed in a uniform strong magnetic field. By comparing with the cases of the Schwarzschild black holes, we find that for stable circle orbits, magnetic field can amplify amplitude and frequency of gravitational waves (here after GWs). For other general orbits, the uniform magnetic field also can amplify amplitude of GWs, enhance energy radiation of GWs and make it to shift to higher frequency. Another obvious influence of magnetic field B is that it can change the form of h × component of GWs.  相似文献   

9.
The coupling of antiferromagnetic spin excitations and propagating holes has been studied theoretically on a square lattice in order to investigate the dependence of antiferromagnetic order on hole doping, being of relevance, e.g., for the Cu–3 d9 system in antiferromagnetic CuO2-planes of high-Tc superconductors. An effective Hamiltonian has been used, which results from a 2D Hubbard model (hopping integral t) with holes and with strong on-site Coulomb repulsion U. Bare antiferromagnetic excitations and holes with energies of the same order of magnitude t2/U are interacting via a coupling term being proportional to t and allowing holes to hop by emitting and absorbing spinwaves. In terms of a self-consistent one-loop approximation the renormalization of the spectral function both of holes and antiferromagnetic spin excitations are calculated.  相似文献   

10.
We present a simple analytical approach to calculate the built-in strain-induced and spontaneous piezoelectric fields in nitride-based quantum dots (QDs) and then apply the method to describe the variation of exciton, biexciton and charged exciton energy with dot size in GaN/AlN QDs. We first present the piezoelectric potential in terms of a surface integral over the QD surface, and confirm that, due to the strong built-in electric field, the electrons are localised near the QD top and the holes are localised in the wetting layer just below the dot. The strong localisation and smaller dielectric constant results in much larger Coulomb interactions in GaN/AlN QDs than in typical InAs/GaAs QDs, with the interaction between two electrons, Jee, or two holes, Jhh, being about a factor of three larger. The electron–hole recombination energy is always blue shifted in the charged excitons, X and X+, and the biexciton, and the blue shift increases with increasing dot height. We conclude that spectroscopic studies of the excitonic complexes should provide a useful probe of the structural and piezoelectric properties of GaN-based QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号