首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
Graph states are special multipartite entangled states that have been proven useful in a variety of quantum information tasks. We address the issue of characterizing and quantifying the genuine multipartite entanglement of graph states up to eight qubits. The entanglement measures used are the geometric measure, the relative entropy of entanglement, and the logarithmic robustness, have been proved to be equal for the genuine entanglement of a graph state. We provide upper and lower bounds as well as an iterative algorithm to determine the genuine multipartite entanglement.  相似文献   

2.
We propose a scheme of preparing four-atom cluster states in thermal cavity. Four two-level atoms, three thermal cavities and classical field are used in the scheme. Compared with previous schemes, the scheme can be generalized to n-atom cluster states and the successful probability can be 100%, which the system of the photon can never reach. In addition, the system is insensitive to cavity decay and the thermal field. Using the four-atom cluster state, we also propose a simpler scheme for remote controlled not gate (CNOT), in which we detect the separate states instead of the joint-Bell states measurement.  相似文献   

3.
We have studied the generation of multipartite entangled states for the superconducting phase qubits. The experiments performed in this direction have the capacity to generate several specific multipartite entangled states for three and four qubits. Our studies are also important as we have used a computable measure of genuine multipartite entanglement whereas all previous studies analyzed certain probability amplitudes. As a comparison, we have reviewed the generation of multipartite entangled states via von Neumann projective measurements.  相似文献   

4.
We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and is not sensitive to the thermal state of the cavity. In particular, we have managed to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.  相似文献   

5.
We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipaxtite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states.  相似文献   

6.
杨榕灿  李洪才  陈美香  林秀 《中国物理》2006,15(10):2315-2319
We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.  相似文献   

7.
We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states.In the case of atomic state generation,we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station.Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states.After interaction,the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol.However,for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation.The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner.  相似文献   

8.
We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave plates. We can obtain three-photon and four-photon entangled states with postselection, as with other protocols. This protocol has the advantage of high efficiency and is more feasible than others.  相似文献   

9.
We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.  相似文献   

10.
We propose an efficient hyperconcentration protocol for distilling maximally hyperentangled state from partially entangled pure state, resorting to the projection measurement on an auxiliary photon. In our scheme, two photons simultaneously entangled in polarization states and spatial modes are considered. One party performs quantum nondemolition detections on his photon and an additional photon to produce three photon hyperentangled state, then he projects the assistant photon into an orthogonal basis composed of both the polarization and spatial degree of freedom. Then the state of the left two photons collapses into maximally hyperentangled state with a certain probability. In the rest cases, some less-entangled states are obtained, which can be used as resource for the next round concentration. By repeating the concentration process for several rounds, a higher success probability can be obtained, which makes our scheme useful in practical quantum information applications.  相似文献   

11.
We propose an efficient scheme for preparing multi-qubit graph states via spin networks. The classical types of graph states including cluster state, Greenberger-Horne-Zeilinger state and circle-shaped states can be generated by using imaginary SWAP gate. Our method makes the generation of multipartite entangled graph states more efficient than the ones based on conventional controlled-NOT and controlled phase flip gate for solid-state devices.  相似文献   

12.
We propose a scheme to generate the multi-photon cluster states via the cavity input-output process and the single-bit rotations. The method can be generalized to construct a series of multi-photon graph states, and the successful probability is close to unity in the ideal condition.  相似文献   

13.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

14.
We propose a method for the generation of motional pair coherent states for the center of mass and relative motional modes for two trapped ions. The scheme is generalized to prepare pair cat states. The scheme does not require individual ionic laser addressing.  相似文献   

15.
We firstly give a nonlocal method for generating pair coherent state with two traveling wave fields in distinct districts. The experimental scheme proposed is based on a two-mode photon number matching process, which employs weak cross-Kerr media and on/off detection. Then we discuss the details for implementing this scheme, showing that it is robust against the low quantum efficiency of photon detectors and offers nearly perfect pair coherent states. Finally, we show how a two-mode Schrödinger cat state and a generalized two-mode correlated photon number state can be prepared via this matching process.  相似文献   

16.
A two qubit quantum gate, namely the C-phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the phased Dicke states are also discussed in detail.  相似文献   

17.
Nonclassical features of the superposition of two coherent states which are π/2 out of phase are discussed, such as sub-Poissonian photon statistics and quadrature squeezing, as well as negativity of the Wigner function. Special nonclassicality is found in the special state where the relative phase of superposition has relationship with the average photon number. The analysis of the amount of entanglement is also presented for the related two-mode entangled coherent states.  相似文献   

18.
Two schemes are proposed for generating atomic qubits cluster states in cavity quantum electrodynamics (QED). In the first scheme, only two-atom-cavity interactions are involved, and cluster states can be directly generated by using constructed two-qubit controlled phase gates. The second scheme needs the assistance of additional single-qubit rotations, but takes less time than the first one for two-atom operations in the cavity. In this scheme, two projective operators are constructed to prepare two-dimension or more complicated configurations of cluster states. Both schemes are insensitive to the cavity decay due to the fact that the cavity is only virtually excited during the interaction between atoms and the cavity. The idea can also be applied to the ion trap system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号