首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation behaviour of SiC coatings   总被引:1,自引:0,他引:1  
Amorphous silicon carbide (SiC) films were deposited on silicon substrates by radio-frequency magnetron sputtering. The films were oxidized in air in the temperature range 400–900 °C and for times from 1 to 16 h. Neutron reflectivity measurements provided information on the thickness, density and roughness of the SiC and on the formed SiO2 layers. Fourier transform infrared spectroscopy was used to determine the bond structure of the formed SiO2 and changes in the bonding of SiC after exposure at the oxidation temperature. The surface morphology of the oxidized films was characterized by atomic force microscopy measurements. The oxidation kinetics is initially fast and as the SiO2 layer is formed it slows down. The SiC consumption varies linearly with time at all oxidation temperatures. Exposure of the SiC at the oxidation temperature affects its density and to some degree its bond structure, while the formed SiO2 has density and bond structure as that formed by oxidation of Si under the same conditions. PACS  66.30.Ny; 68.47.Gh; 68.55.J-  相似文献   

2.
Thermal oxidation temperature dependence of 4H-SiC MOS interface   总被引:1,自引:0,他引:1  
The thermal oxidation temperature dependence of 4H-silicon carbide (SiC) is systematically investigated using X-ray photoelectron spectroscopy (XPS) and capacitance-voltage (C-V) measurements. When SiC is thermally oxidized, silicon oxycarbides (SiCxOy) are first grown and then silicon dioxide (SiO2) is grown. It is identified by XPS that the SiO2 films fall into two categories, called SiC-oxidized SiO2 and Si-oxidized SiO2 in this paper. The products depend on thermal oxidation temperature. The critical temperature is between 1200 and 1300 °C. The interface trap density (Dit) of the sample possessing Si-oxidized SiO2, at thermal oxidation temperature of 1300 °C, is lower than SiC-oxidized SiO2 at and below 1200 °C, suggesting that a decrease of the C component in SiO2 film and SiO2/SiC interface by higher oxidation temperature improves the metal-oxide-semiconductor (MOS) characteristics.  相似文献   

3.
Silicon is by far the most important material used in microelectronics, partly due to the excellent electronic properties of its native oxide (SiO2), but substitute semiconductors are constantly the matter of research. SiC is one of the most promising candidates, also because of the formation of SiO2 as native oxide. However, the SiO2/SiC interface has very poor electrical properties due to a very high density of interface states which reduce its functionality in MIS devices. We have studied the electronic properties of defects in the SiO2/Si and SiO2/SiC interfaces by means of XAS, XPS and resonant photoemission at the O 1s and the Si 2p edges, using silicon dioxide thermally grown with thicknesses below 10 nm. Our XAS data are in perfect agreement with literature; in addition, resonant photoemission reveals the resonant contributions of the individual valence states. For the main peaks in the valence band we find accordance between the resonant behaviour and the absorption spectra, except for the peaks at −15 eV binding energy, whose resonant photoemission spectra have extra features. One of them is present in both interfaces and is due to similar defects, while another one at lower photon energy is present only for the SiO2/SiC interface. This is related to a defect state which is not present at the SiO2/Si interface.  相似文献   

4.
The methods of atomic force microscopy and optical absorption spectroscopy are applied to study the effect of microwave treatment on the properties of SiO2/SiC structures obtained by rapid thermal annealing and conventional thermal oxidation in steam. From the variation of the sample optical density with total time of microwave treatment, it is concluded that the structures prepared by rapid thermal annealing are more stable against microwave radiation. It is shown that long-term microwave treatment flattens the oxide film surface at the nanolevel regardless of the method of silicon carbide oxidation.  相似文献   

5.
The influence of an oxide coating on the strength characteristics of single-crystal silicon surface layers is investigated by the microindentation method. It is shown experimentally that a strengthened layer with a thickness of 0.2–0.4 μm and a microhardness of 20–35 GPa, which is two or three times as much as the microhardness of bulk single-crystal silicon, is present near the SiO2/Si interface. The thickness and microhardness of this layer depends on the growth conditions of the oxide. The formation of this layer is most probably caused by interstitial silicon atoms formed near the SiO2/Si interface during silicon oxidation.  相似文献   

6.
As a result of considerable progress in microfabrication technology for ultra-large scale integration (ULSI), it has become necessary to control oxide formation on an atomic scale in order to produce defect-free SiO2/Si interfaces. However, the possibility of forming an atomically flat interface by oxidizing an atomically flat silicon surface without introducing structural defects is not yet clarified. In this article the present understanding of chemical structures of SiO2/Si interfaces and initial stage of oxidation of silicon surfaces are reviewed.  相似文献   

7.
Formation of defect states on semiconductor surfaces, at its interfaces with thin films and in semiconductor volumes is usually predetermined by such parameters as semiconductor growth process, surface treatment procedures, passivation, thin film growth kinetics, etc. This paper presents relation between processes leading to formation of defect states and their passivation in Si and GaAs related semiconductors and structures. Special focus is on oxidation kinetics of yttrium stabilized zirconium/SiO2/Si and Sm/GaAs structures. Plasma anodic oxidation of yttrium stabilized zirconium based structures reduced size of polycrystalline silicon blocks localised at thin film/Si interface. Samarium deposited before oxidation on GaAs surface led to elimination of EL2 and/or ELO defects in MOS structures. Consequently, results of successful passivation of deep traps of interface region by CN atomic group using HCN solutions on oxynitride/Si and double oxide layer/Si structures are presented and discussed. By our knowledge, we are presenting for the first time the utilization of X-ray reflectivity method for determination of both density of SiO2 based multilayer structure and corresponding roughnesses (interfaces and surfaces), respectively.  相似文献   

8.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
A metal-insulator-semiconductor structure based on silicon carbide with a subgate layer of LaF3 solid electrolyte is discussed as a gas sensor. The kinetics of the variation of the flat-band potential of a Pt/LaF3/SiO2/SiC structure in interaction with chlorofluorocarbons (Freons) is investigated in the temperature range from 300 to 530 °C. The activation energies of the gas sensitivity are estimated from the temperature dependences of the response rate of the sensor to various Freons. The possibility of detecting all the investigated chlorofluorocarbons at a concentration level of 10 ppm in air is demonstrated. Zh. Tekh. Fiz. 69, 80–85 (November 1999)  相似文献   

10.
Luminescent and structural characteristics of SiO2 layers exposed to double implantation by Si+ and C+ ions in order to synthesize nanosized silicon carbide inclusions have been investigated by the photoluminescence, electron spin resonance, transmission electron microscopy, and electron spectroscopy methods. It is shown that the irradiation of SiO2 layers containing preliminary synthesized silicon nanocrystals by carbon ions is accompanied by quenching the nanocrystal-related photoluminescence at 700–750 nm and by the enhancement of light emission from oxygen-deficient centers in oxide in the range of 350–700 nm. Subsequent annealing at 1000 or 1100°C results in the healing of defects and, correspondingly, in the weakening of the related photoluminescence peaks and also recovers in part the photoluminescence of silicon nanocrystals if the carbon dose is less than the silicon dose and results in the intensive white luminescence if the carbon and silicon doses are equal. This luminescence is characterized by three bands at ~400, ~500, and ~625 nm, which are related to the SiC, C, and Si phase inclusions, respectively. The presence of these phases has been confirmed by electron spectroscopy, the carbon precipitates have the sp 3 bond hybridization. The nanosized amorphous inclusions in the Si+ + C+ implanted and annealed SiO2 layer have been revealed by high-resolution transmission electron microscopy.  相似文献   

11.
The wide band gap semiconductor silicon carbide (SiC) is the first-choice material for power electronic devices operating at high voltages, high temperatures, and high switching frequencies. Due to their importance for crystal growth, processing, and device fabrication, the electronic properties of SiC surfaces and interfaces to other materials such as metals and dielectrics are of particular interest. Unreconstructed, H-terminated SiC surfaces which are passivated in a chemical as well as an electronic sense are obtained in a thermal hydrogenation process. It is demonstrated that deposition of Al2O3 on H-terminated SiC(0001) leads to an interface which is lower in defects than the thermally grown SiO2/SiC interface. Furthermore, starting from hydrogenated SiC{0001} surfaces it is possible to prepare unreconstructed (1×1) surfaces with one dangling bond per unit cell. These surfaces show indications for strong electron correlation effects. PACS 68.47.Fg; 73.20.At; 79.60.Bm; 68.35.Bs; 68.35.Dv  相似文献   

12.
The oxidation process on silicon carbide (SiC) surfaces is important for wide bandgap power semiconductor devices. We investigated SiC oxidation using supercritical water (SCW) at high pressure and temperature and found that a SiC surface can be easily oxidized at low temperature. The oxidation rate is 10 nm/min at 400 °C and 25 MPa, equal to that of conventional thermal dry oxidation at 1200 °C. Low-temperature oxidation should contribute to improved performance in future SiC devices. Moreover, we found that SCW oxidation at 400 °C forms a much smoother SiO2/SiC interface than that obtained by conventional thermal dry oxidation. A higher oxidation rate and smaller microroughness are achieved at a lower oxidation temperature owing to the high density of oxidizers under SCW conditions.  相似文献   

13.
Epitaxial 3C-SiC grains are formed at 1190 °C in the top region of silicon, when Si wafers coated by SiO2 are annealed in CO atmosphere. The formed SiC grains are 40-50 nm high and 100 nm wide in cross-section and contain only few defects. Main advantage of the method is that the final structure is free of voids.The above method is further developed for the generation of SiC nanocrystals, embedded in SiO2 on Si, and aligned parallel with the interface. The nanometer-sized SiC grains were grown into SiO2 close to the Si/SiO2 interface by a two-step annealing of oxide covered Si: first in a CO, than in a pure O2 atmosphere. The first (carbonization) step created epitaxial SiC crystallites grown into the Si surface, while the second (oxidation) step moved the interface beyond them. Conventional and high resolution cross-sectional electron microscopy showed pyramidal Si protrusions at the Si/SiO2 interface under the grains. The size of the grains, as well as their distance from the Si/SiO2 interface (peak of pyramids) can be controlled by the annealing process parameters. The process can be repeated and SiC nanocrystals (oriented in the same way) can be produced in a multilevel structure.  相似文献   

14.
利用射频磁控反应溅射技术,制备了氮掺杂的SiO2纳米薄膜.发现N掺杂SiO2体系纳米薄膜具有铁磁性.较小的氮化硅颗粒均匀分布在氧化硅基质中有利于磁有序的形成.基底温度为400℃时,样品薄膜具有最大的饱和磁化强度和矫顽力,分别为35 emu/cm3和75 Oe.薄膜的磁性可能产生于氮化硅和氧化硅的界面.理论计算表明,N掺杂SiO2体系具有净自旋.同时,由氮化硅和氧化硅界面之间的电荷转移导致的轨道磁矩也会对样品的磁性有贡献 关键词: 2薄膜')" href="#">N掺杂SiO2薄膜 射频磁控反应溅射 界面磁性 基底温度  相似文献   

15.
Analysis of the capacitance-voltage (C-V) characteristics reveals an elevated concentration of charge carriers under the surface of a silicon substrate due to the formation of elastically stressed regions induced in the substrate by Si x Ge1 ? x nanoislands grown on the preliminarily oxidized Si surface. The C-V characteristics exhibit charge density peaks at a depth from 700 to 1000 nm for Si/SiO2/Si x Ge1 ? x structures with various thicknesses of the SiO2 layer. The results of theoretical calculations of the electron density distribution in the bulk of the silicon substrate correspond on the whole to the C-V characteristics. The state of the interfaces in the structures with different thicknesses of the oxide layer, which determines the effects of surface and interfacial recombination as well as charge carrier scattering, is studied by analyzing the kinetics of decay of a photo-emf signal and the photo-emf distribution over the surface of the structure. The results can be used in the development of various devices based on SiGe with inclusions of oxide layers.  相似文献   

16.
《Current Applied Physics》2020,20(12):1386-1390
The use of SiO2/4H–SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) can be problematic due to high interface state density (Dit) and low field-effect mobility (μfe). Here, we present a tetra-ethyl-ortho-silicate (TEOS)-based low-pressure chemical vapor deposition (LPCVD) method for fabricating the gate oxide of 4H–SiC MOSFETs using nitric oxide post-deposition annealing. SiO2/4H–SiC MOS capacitors and MOSFETs were fabricated using conventional wet and TEOS oxides. The measured effective oxide charge density (Qeff) and Dit of the TEOS-based LPCVD SiO2/4H–SiC MOS capacitor with nitridation were 4.27 × 1011 cm−2 and 2.99 × 1011 cm−2eV−1, respectively. We propose that the oxide breakdown field and barrier height were dependent on the effective Qeff. The measured μfe values of the SiO2/4H–SiC MOSFETs with wet and TEOS oxides after nitridation were, respectively, 11.0 and 17.8 cm2/V due to the stable nitrided interface between SiO2 and 4H–SiC. The proposed gate stack is suitable for 4H–SiC power MOSFETs.  相似文献   

17.
We have studied CO interaction with SiO2/Si system at high temperature (~ 1100 °C) and 350 mbar by core-level photoemission. Even for short annealing time (5 min) the signal from Si2p and C1s core levels shows a clear change upon CO treatment. Shifted components are attributed to formation of SiC. This is confirmed by TEM imaging which further shows that the silicon carbide is in the form of nano-crystals of the 3C polytype. Photoemission spectroscopy moreover reveals the formation of silicon oxicarbide which could not be evidenced by other methods. Combining these results with previous Nuclear Resonance Profiling study gives a deeper insight into the mechanisms involved in the nanocrystals growth and especially for the reaction equation leading to SiC formation. We show that CO diffuses as a molecule through the silica layer and reacts with the silicon substrate according the following reaction: 4 CO + 4 Si  SiO2 + 2SiC + SiO2C2.  相似文献   

18.
Conventional thermal oxidation of SiC requires heating at ∼1100 °C. In the present study, we have developed a method of oxidizing SiC at low temperatures (i.e., ∼120 °C) to form relatively thick silicon dioxide (SiO2) layers by use of nitric acid. When 4H-SiC(0 0 0 1) wafers are immersed in 40 wt% HNO3 at the boiling temperature of 108 °C and the boiling is kept for 5 h after reaching the azeotropic point (i.e., 68 wt% HNO3 at 121 °C), 8.1 nm thick SiO2 layers are formed on the SiC substrates. High resolution transmission electron microscopy measurements show that the SiO2/SiC interface is atomically flat and the SiO2 layer is uniform without bunching. When SiC is immersed in an azeotropic mixture of HNO3 with water from the first, the SiO2 thickness is less than 0.3 nm. The metal-oxide-semiconductor (MOS) diodes with the SiO2 layer formed by the nitric acid oxidation method possess a considerably low leakage current density.  相似文献   

19.
Resonant silicon Auger KLL and 2s and 2p photoemission spectra of a porous silicon sample have been studied when excited by photons in the energy domain of the 1s edge in pure silicon and silicon oxide. Characteristic features of a resonant process could be detected. In particular, the constant initial state spectrum of the 2p state of silica behaves similarly to that encountered in systems which present a well-defined atomic level. This is due to the existence of a well-localized molecular orbital built in the SiO4 unit. The use of high-energy photons, which generate high-energy electrons, allows these photoemission experiments to be quite bulk sensitive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号