首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
脉冲电晕放电中OH自由基的发射光谱研究   总被引:2,自引:0,他引:2  
采用发射光谱法测量了在加湿的空气、氮气、氩气3种气体背景下脉冲电晕放电产生的OH自由基,通过对发射谱线的分析,研究了在3种背景条件下,脉冲峰值电压、脉冲频率等因素对OH自由基产生过程的影响,着重研究了气体湿度对OH自由基产生过程的影响以及OH自由基在放电电场中的分布特性。实验表明OH自由基的生成量随脉冲峰值电压和脉冲频率的增大而增大,而湿度变化对其影响则与放电背景环境有关,不同背景气体下其变化规律也不相同。空气中放电时产生的OH自由基数量随湿度的增大而增大,氮气中OH自由基的生成量随湿度增大呈先增大后减小趋势,而氩气中OH自由基数量随湿度的增大呈先减少后增大趋势。OH自由基在放电电场中的分布呈从针电极中心向四周逐渐减少趋势。  相似文献   

2.
对激光诱导荧光法测量对流层OH自由基时,激光与大气中的臭氧及水蒸气作用产生的OH自由基的转动态分布及其随时间的演化进行了研究,并对新生的OH自由基对荧光信号的干扰强度进行了讨论。  相似文献   

3.
液相放电能够产生各种活性物质,其中羟基自由基(OH),氢自由基(H)被认为是引发液相化学反应的主要活性物种,但由于其活性强寿命短的特点,测量比较困难,由于缺少标准样品,定量测量更为困难。用光学方法测量自由基是一种直接测量方法,其特点是瞬时在线测量,能立即获得数据,进行时间和空间分布测量。为了研究微波水中放电产生的自由基特性,利用发射光谱诊断技术对微波水中放电产生的活性物质进行了在线检测,考察了微波功率、反应器内部压强对OH自由基相对光谱强度的影响,并观测了等离子体中OH自由基强度的空间分布;同时,估算了微波液相等离子体中的电子激发温度。实验结果表明,微波水中放电可以产生大量的OH,H,O自由基,其中OH自由基的相对光谱强度最强,并随微波功率的增加呈现明显上升的趋势,随反应器内部压强的增大而迅速减弱;以OH为主的自由基主要产生于电极尖端附近。微波液相等离子体的电子激发温度约为0.33×10~4 K。  相似文献   

4.
气液两相滑动弧放电中自由基的光谱研究   总被引:1,自引:0,他引:1  
气液两相滑动弧放电是近年来出现的一种新型低温等离子体废水处理技术,对高浓度有机废水具有很好的降解效果.为了认识气液两相滑动弧放电降解有机废水的机理,用发射光谱法对气液两相滑动弧在空气中放电所产生的主要自由基进行了实验研究,分析了自由基持续再生的化学过程.通过对光谱线强度变化的分析,得到了OH和NO自由基谱线强度在放电反应空间的分布特点,以及输入电压和液相(水)流量因素对OH和NO自由基产生过程的影响.结果表明:OH是气液两相滑动弧放电的主导自由基,OH和NO自由基谱线强度沿着电极中轴均先增后减;在非平衡区域,自由基谱线强度随着输入电压的增大而增大;OH自由基谱线强度随水流量的增大而增大,NO自由基谱线强度则随着水流量的增大而减小.  相似文献   

5.
刘源  方志  杨静茹 《强激光与粒子束》2013,25(10):2592-2598
为了研究水蒸气体积分数对大气压等离子体射流放电机理及放电效率的影响,进而产生高活性低温等离子体并优化其效率。通过对大气压氩水等离子体射流的电压电流波形和Lissajous图形等电气特性的测量及发射光谱和发光图像等光学特性诊断,研究了不同水蒸气体积分数时,等离子体射流的放电特性。通过计算放电功率、传输电荷量、电子激发温度、分子振动温度和分子转动温度等主要放电参量,研究了它们随水蒸气体积分数的变化趋势,并结合放电机理对所得实验结果进行分析。结果表明,Ar/H2O等离子体射流除了产生N2和Ar,还有OH和O,气体温度在525~720 K之间变化,为典型的低温等离子体;随着水蒸气体积分数的增加,等离子体羽喷出管口的长度减小,放电功率减小,发光强度减弱,转动温度和振动温度增加;相同功率下,水蒸气体积分数为0.5%时,产生的OH达到最大。  相似文献   

6.
氢能作为一种高热值、无污染的清洁能源日渐受到国内外专家学者的追捧。微波液相放电技术在醇类中制氢具有光明的研究前景,为氢能的研究开发开辟了一条新的途径。通过对乙醇制氢发射光谱分析,有利于分析微波液相放电醇类制氢机理的探讨,为进一步改进微波液相放电制氢技术奠定基础。本文采用2.45GHz频率微波在液相醇类中放电实现了微波液相等离子体制氢,并借助发射光谱仪对微波液相放电乙醇制氢光谱特性进行了研究。研究结果显示:微波液相放电乙醇制氢过程中,能产生大量的H,O,OH,CH,C2等活性粒子;乙醇放电光谱中OH自由基、H自由基和O自由基的光谱强度要远大于纯水中OH自由基、H自由基和O自由基的光谱强度;高能粒子打开水分子中的O—H键,脱氢制氢的过程较乙醇分子难度要大,因此在微波乙醇放电制氢过程中,氢气的来源主要是乙醇分子的脱氢重组,水分解产氢的贡献度较低;在外界压力与温度一定的条件下,OH,H,O自由基的发射光谱强度随着功率的增加显著增强,而CH和C2活性粒子发射光谱强度则出现减弱趋势,这表明较大的微波功率不仅使产生的高能粒子的能量增加,同时高能粒子的密度也有所增加,导致较多的CH和C2基团被充分碰撞打开。  相似文献   

7.
利用发射光谱研究脉冲电晕放电中的自由基   总被引:12,自引:2,他引:10  
利用发射光谱技术在大气压下测量了以氮气为载气的不饱和水蒸气体系针-板式正脉冲电晕放电产生的OH(A^2∑→X^2Ⅱ0—O)自由基和O(3p^5P→3s^5S^02777.4nm),Ha(3P→2S 656.3nm)活性原子的发射光谱,并由N2(C^3Ⅱu→B^3Ⅱg)的△v=-3和△v=-4振动带序发射光谱强度计算得出N2(C,v)的相对振动布居及其振动温度,进而采用高斯分布拟合准确地求出了N2(C^3Ⅱu→B^3Ⅱg)的△v= 1振动带序发射光谱强度,从而可以由N2(C^3Ⅱu→B^3Ⅱg)的△v= 1振动带序与OH(A^2∑→X^2Ⅱ0—0)的重叠发射光谱中准确求出OH(A^2∑→X^2Ⅱ0—0)自由基的发射光谱强度。由发射光谱强度得到了激发态OH(A^3∑)自由基和O(3p^5P),Ha(3P)活性原子的布居。还研究了激发态OH(A^2∑)自由基和O(3p^5P),Ha(3P)活性原子的布居随放电电压和放电频率的变化以及氧气对激发态OH(A^2∑)自由基和O(3p^5P),Ha(3P)活性原子布居的影响。  相似文献   

8.
张秩凡  高俊  雷鹏  周素素  王新兵  左都罗 《物理学报》2018,67(14):145202-145202
光抽运亚稳态稀有气体激光器利用放电等离子体作为激光的增益介质.为掌握容性射频放电的放电参数对等离子体各项参数的影响的基本规律,利用等离子体发射光谱法研究了氦氩混合气体在不同装置、不同Ar组分、不同气压和不同射频注入功率下的等离子体参数.利用残留水蒸气产生的OH自由基A~2Σ~+→X~2Π的转动光谱分析获得气体温度;利用电子态光谱的玻尔兹曼做图法获得电子激发温度,利用Ar原子696.5 nm谱线的斯塔克展宽获得电子密度.结果表明:气体温度随气压增加略微上升,在一个大气压下改变组分和放电功率,气体温度变化不大;电子激发温度随总气压的下降而上升,且随着Ar组分的增加而略微下降;目前放电条件下的电子密度均在10~(15)cm~(-3)量级;长时间放电监测表明,残留的水蒸气会导致电子温度的下降,从而降低Ar亚稳态的产率.  相似文献   

9.
研制了一套等效噪声吸收可达3×10-9cm-1的连续波光腔衰荡光谱装置。用该装置对介质阻挡放电等离子体中的OH自由基和水进行了原位定量测量,考察了OH自由基数密度随气压和放电电压以及放电频率的变化情况。实验结果表明,在(2.13~22.0)Χ103Pa范围内,随着气压增加,OH自由基数密度在气压较低时增加;而在较高气压时由于H2O的解离吸附作用使得体系中电子密度减小,OH自由基数密度随之减小。随放电电压和放电频率增加介质阻挡放电等离子体中电子密度和电子能量增加而导致OH数密度增加。  相似文献   

10.
为更深入地认识电晕放电低温等离子体中自由基的生成机理,以发射光谱测量为基础并结合背景气体淬灭率影响,研究了常压下喷嘴-平板电晕自由基簇射过程中放电参数、背景气体、电极气成分等因素对OH(A2Σ →X2Π,0-0)发光的影响。结果表明:在放电参数影响中,放电电压及放电电流都会影响OH生成量,OH发光随功率增加而大大增强;在加湿氮气直流电晕放电中有明显的OH(A2Σ →X2Π,0-0)光谱存在,但加湿空气条件下OH生成较少;载气增湿后OH生成量明显增多,而Ar和O2的存在分别增强和减弱了OH(A2Σ →X2Π,0-0)发光,可能的原因是这两种物质影响了放电和OH(A2Σ )的淬灭。  相似文献   

11.
 为更深入地认识电晕放电低温等离子体中自由基的生成机理,以发射光谱测量为基础并结合背景气体淬灭率影响,研究了常压下喷嘴-平板电晕自由基簇射过程中放电参数、背景气体、电极气成分等因素对OH(A2S+→X2p, 0-0)发光的影响。结果表明:在放电参数影响中,放电电压及放电电流都会影响OH生成量,OH发光随功率增加而大大增强;在加湿氮气直流电晕放电中有明显的OH(A2S+→X2p, 0-0)光谱存在,但加湿空气条件下OH生成较少;载气增湿后OH生成量明显增多,而Ar和O­2的存在分别增强和减弱了OH(A2S+→X2p, 0-0)发光,可能的原因是这两种物质影响了放电和OH(A2S+)的淬灭。  相似文献   

12.
In this paper, the emission spectra of OH radical (A2Σ+→X2Π, 0-0) were successfully measured by optical emission spectroscopy (OES) in multi-needle to plate negative DC corona discharge at atmospheric pressure in humid ambient air. The influences of discharge power, distance between needlepoint and plate, and relative humidity on production and productive rate of OH radical have been investigated. The optimized parameters of excited OH radical under present experimental conditions were obtained from the analysis of experimental results.  相似文献   

13.
Three types of DC electrical discharges in atmospheric air (streamer corona, transient spark and glow discharge) were tested for bio-decontamination of bacteria and yeasts in water solution, and spores on surfaces. Static vs. flowing treatment of contaminated water were compared, in the latter the flowing water either covered the grounded electrode or passed through the high voltage needle electrode. The bacteria were killed most efficiently in the flowing regime by transient spark. Streamer corona was efficient when the treated medium flew through the active corona region. The spores on plastic foil and paper surfaces were successfully inactivated by negative corona. The microbes were handled and their population evaluated by standard microbiology cultivation procedures. The emission spectroscopy of the discharges and TBARS (thiobarbituric acid reactive substances) absorption spectrometric detection of the products of lipid peroxidation of bacterial cell membranes indicated a major role of radicals and reactive oxygen species among the bio-decontamination mechanisms.  相似文献   

14.
以发射光谱法为基础,检测了常压状态线-板式脉冲电晕放电过程OH自由基在反应器内的空间分布;研究了线电极直径,线线间距以及线板间距对生成OH自由基的影响;从而明确脉冲电晕放电反应器的性能。结果显示:OH自由基浓度沿线电极X轴方向逐渐降低,活化区域半径20mm左右,沿Y轴方向先升高后降低,活化区域半径大于30mm;线电极的直径小于2mm时,OH自由基的光谱强度基本不变,线电极直径继续增大,发射光谱强度随之迅速下降。线线间距逐渐增大,OH自由基的发射光谱强度随之增强。OH自由基的发射光谱强度随着线板间距的增大而降低。  相似文献   

15.
采用了一种针对针的放电结构,将其放置在一个高纯氩气的密闭腔室中,通过施加正极性的过电压产生可重复的大气压纳秒脉冲放电,并提出建立大气压放电的连续辐射模型来诊断氩气纳秒脉冲放电中的电子温度。实验利用电压和电流探头分别获取放电过程中的电压和电流波形图,其放电脉宽约为20 ns。通过消色差透镜、单色仪和ICCD等光学系统的组合来测量放电正柱区在不同时刻(0<t<20 ns)的时间分辨发射光谱。结果表明,放电中连续谱的强度随时间先增加(0<t<10 ns)后减小(10 ns<t<20 ns),但是氩原子的谱线强度则随时间的增加而一直增大。研究表明连续谱强度与电子密度成正相关,因而电子密度随着时间也是先增加而后减小,这与放电电流的变化规律是完全一致的。根据连续谱模型拟合得到放电过程中(0<t<10 ns)的电子温度为(1.4±0.2) eV。随着驱动电压的下降(10 ns<t<20 ns),电子温度逐步减小至0.9 eV。在0<t<10 ns中,激发态氩原子主要是由电子碰撞激发产生的,因而谱线强度随着电子密度的增加而增大。然后,随着电子温度的减小,Ar+2复合反应速率激增,导致电子与离子的复合过程主导产生激发态氩原子,即谱线强度继续增大。通过加入0.5%的水蒸气以获取OH的振转光谱。实验发现,OH(A)的产生机制使其偏离玻尔兹曼平衡分布,本文采用了双温的OH(A-X)光谱模型来考察气体温度。在放电过程中,气体温度保持不变,大约为400 K。此外,水蒸气的加入使得短波长的连续谱发生显著增强。光谱分析认为H2O在放电中能够解离产生H2,继而与氩原子的亚稳态发生能量转移生成激发态H2(a3Σ+g)。H2(a3Σ+g)将会自发辐射跃迁到排除态H2(b3Σ+u),同时发射短波长的连续谱。由于短波长的连续谱对电子温度(Te>1 eV)的响应较为灵敏,所以载气中少量的水蒸气将会对连续谱诊断电子温度带来较大的影响。  相似文献   

16.
A mathematical model was proposed to describe the behaviour of the removal of nitrogen oxides (NOx) in a positive pulsed corona discharge reactor. The proposed model takes into account radical production at each pulsing and subsequent radical utilization for NOx removal. The production efficiencies of radicals such as O, OH, H, and N were derived by considering direct electron impact on dissociation of gaseous molecules, followed by excitation transfer reactions of excited oxygen atoms. The production efficiencies of those species were used for the model calculations. The proposed model could adequately predict the experimental data. Of the active species present, the ozone (O3) produced by the reaction of O radical with oxygen was found to play the crucial role in oxidation of NO to NO2 , both theoretically and experimentally  相似文献   

17.
多相脉冲放电体系中羟基自由基的光谱诊断   总被引:1,自引:0,他引:1  
采用多针-板电极形式的气液混合脉冲放电系统,在其中加入玻璃珠负载的TiO2膜光催化剂形成了一个气-液-固多相脉冲放电体系,研究中利用脉冲放电过程中产生的紫外光效应诱导其中的TiO2的光催化作用,通过对放电体系中羟基自由基(·OH)的光谱诊断考察TiO2光催化作用与脉冲流光放电的协同作用效果.结果表明,本脉冲放电体系中产生的·OH在306 nm(A2∑ →X 2Ⅱ跃迁)、309 nm(A2∑ (v'=0)→X2Ⅱ(v″=0)跃迁)和313 nm(A2∑ v′=1)→X2Ⅱ(V″=1)跃迁)处均产生发射光谱,其中313 nm处的·OH的光谱强度最强;脉冲放电协同TiO2光催化作用系统中·OH的发射光谱强度较单独的脉冲放电体系强,同时,条件实验(不同鼓气种类和水溶液初始pH值)的研究结果表明用氩气作为鼓气源时,多相反应体系中313 nm处·OH的发射光谱强度比以空气和氧气作为鼓气源时的强度高,酸性溶液中313 nm处·OH的发射光谱强度比中性和碱性溶液中高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号