首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
纤锌矿GaN/AlxGa1-xN量子阱中极化子能量   总被引:1,自引:1,他引:0  
采用LLP变分方法研究了纤锌矿GaN/AlxGa1-xN量子阱材料中极化子的能级,给出极化子基态能量、第一激发态能量和第一激发态到基态的跃迁能量与量子阱宽度和量子阱深度变化的函数关系。研究结果表明,极化子基态能量、第一激发态能量和跃迁能量随着阱宽L的增大而开始急剧减小,然后缓慢下降,最后接近于体材料GaN中的相应值。基态能量和第一激发态到基态的跃迁能量随着量子阱深度的增加而逐渐增加,窄阱时这一趋势更明显。纤锌矿氮化物量子阱中电子-声子相互作用对能量的贡献比较大,这一值(约40meV)远远大于闪锌矿(GaAs/AlxGa1-xAs)量子阱中相应的值(约3meV)。因此讨论GaN/AlxGa1-xN量子阱中电子态问题时应考虑电子-声子相互作用。  相似文献   

2.
萨茹拉  关玉琴 《发光学报》2007,28(5):667-672
利用改进的Lee-Low-Pines(LLP)方法和变分法研究了在外磁场作用下氮化物无限抛物量子阱中自由极化子的能级,得到了极化子基态能量随量子阱阱宽和外磁场变化的规律,对GaN/Al0.3Ga0.7N抛物量子阱进行了数值计算.结果表明:外磁场对极化子的能量有明显的影响,极化子基态能量随阱宽的增强而减小,随磁场的增强而增大,并且电子-声子相互作用对氮化物量子阱中极化子能量的贡献是很大的.  相似文献   

3.
对GaAs/AlxGa1-xAs和GaN/AlxGa1-xN无限深量子阱系统,考虑压力及屏蔽效应,利用变分方法数值计算这两种系统中的杂质态结合能。给出了结合能随阱宽和压力的变化关系,同时讨论了有无屏蔽时的区别。结果表明,结合能随压力增大而增大,随阱宽增大而减小;屏蔽效应随着压力的增加而增加,并且显著降低了杂质态的结合能。  相似文献   

4.
本文报道在300和77K对一组具有不同垒宽Lb0.23Ga0.77As双量子阱样品的光调制反射谱(PR)的研究结果。除观察到11H,11L和22H等容许跃迁外,同时还识别一个从Al0.23Ga0.77As价带顶至量子阱第一电子束缚能级的跃迁,另一个从量子阱第一轻空穴束缚能级至Al0.23Ga0.77As导带底的跃迁。利用这些跃迁确定导带边不连续性为0.63。对Lb关键词:  相似文献   

5.
赵正印  王红玲  李明 《物理学报》2016,65(9):97101-097101
正如人们所知, 可以通过电场或者设计非对称的半导体异质结构来调控体系的结构反演不对称性(SIA)和Rashba自旋劈裂. 本文研究了Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中第一子带的Rashba 系数和Rashba自旋劈裂随Al0.3Ga0.7N插入层(右阱)的厚度ws以及外加电场的变化关系, 其中GaN层(左阱)的厚度为40-ws Å. 发现随着ws的增加, 第一子带的Rashba系数和Rashba自旋劈裂首先增加, 然后在ws>20 Å 时它们迅速减小, 但是ws>30 Å时Rashba自旋劈裂减小得更快, 因为此时kf也迅速减小. 阱层对Rashba系数的贡献最大, 界面的贡献次之且随ws变化不是太明显, 垒层的贡献相对比较小. 然后, 我们假ws=20 Å, 发现外加电场可以很大程度上调制该体系的Rashba系数和Rashba自旋劈裂, 当外加电场的方向同极化电场方向相同(相反)时, 它们随着外加电场的增加而增加(减小). 当外加电场从-1.5×108 V·m-1到1.5×108 V· m-1变化时, Rashba系数随着外加电场的改变而近似线性变化, Rashba自旋劈裂先增加得很快, 然后近似线性增加, 最后缓慢增加. 研究结果表明可以通过改变GaN层和Al0.3Ga0.7N层的相对厚度以及外加电场来调节Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba 系数和Rashba自旋劈裂, 这对于设计自旋电子学器件有些启示.  相似文献   

6.
吴正云  黄启圣 《物理学报》1996,45(3):486-490
采用聚焦Ga+离子束注入方法,在GaAs/Al0.3Ga0.7As多量子阱材料上尝试制备半导体量子线。通过低温光致发光谱,测量了量子线的光电特性,并观察了由于沟道效应导致的深层量子阱的光谱蓝移。 关键词:  相似文献   

7.
用平面波展开法对GaN/AlxGa1-xN球形量子点中类氢杂质态能级随量子点半径、Al组分以及结合能随Al组分的变化规律进行了详细讨论.计算了量子点内外有效质量差异对杂质态能级和结合能的修正,结果表明对于Al组分较高的GaN/AlxGa1-xN球形量子点,电子有效质量差异对杂质能级和结合能的修正不能忽略.考虑电子有效质量差异后,进一步具体计算了杂质结合能随量子点半 关键词: 球形量子点 平面波展开法 有效质量  相似文献   

8.
黄春晖  卢学坤  丁训民 《物理学报》1989,38(12):1968-1973
用紫外光电子能谱研究了Al0.7Ga0.3As的表面态结构,观察到Al0.7Ga0.3As在价带中的两个表面态结构。在1500L原子氢吸附后消失。研究了这两个表面态结构在热退火消除表面损伤过程中的变化。结合LEED和XPS的实验结果,确定在450℃左右的热退火可以有效地消除损伤,获得一个完整的Al0.7Ga0.3As(100)表面。 关键词:  相似文献   

9.
雷双瑛  沈波  张国义 《物理学报》2008,57(4):2386-2391
用薛定谔方程和泊松方程自洽计算的方法研究了Al0.75Ga0.25N/GaN对称双量子阱(DQWs)中子带间跃迁(ISBT)的波长和吸收系数对中间耦合势垒高度、中间耦合势垒宽度、势阱宽度和势垒掺杂浓度的依赖关系.研究发现,第一奇序子带S1ood与第二偶序子带S2even ISBT波长随着中间耦合势垒高度的降低而变短.当中间耦合势垒高度高于0.62 eV时,S1odd< 关键词: 自洽 xGa1-xN/GaN双量子阱')" href="#">AlxGa1-xN/GaN双量子阱 子带间跃迁  相似文献   

10.
外电场下极性量子阱中杂质态结合能   总被引:4,自引:3,他引:1       下载免费PDF全文
我们用变分方法研究了外电场下量子阱中的杂质态结合能,计算中既考虑了电子同体纵光学声子和界面光学声子的相互作用又考虑了杂质中心同体纵光学声子和界面光学声子的相互作用。我们以GaAs/Al0.3Ga0.7As量子阱为例,讨论了结合能随杂质位置、阱宽和电场强度的变化规律。得到了电子-声子相互作用对杂质态结合能和斯塔克效应的修正是相当明显的。  相似文献   

11.
赵凤岐  张敏  李志强  姬延明 《物理学报》2014,63(17):177101-177101
用改进的Lee-Low-Pines变分方法研究纤锌矿In0.19Ga0.81N/GaN量子阱结构中束缚极化子能量和结合能等问题,给出基态结合能、不同支长波光学声子对能量和结合能的贡献随阱宽和杂质中心位置变化的数值结果.在数值计算中包括了该体系中声子频率的各向异性和内建电场对能量和结合能的影响、以及电子和杂质中心与长波光学声子的相互作用.研究结果表明,In0.19Ga0.81N/GaN量子阱材料中光学声子和内建电场对束缚极化子能量和结合能的贡献很大,它们都引起能量和结合能降低.结合能随着阱宽的增大而单调减小,窄阱中减小的速度快,而宽阱中减小的速度慢.不同支声子对能量和结合能的贡献随着阱宽的变化规律不同.没有内建电场时,窄阱中,定域声子贡献小于界面和半空间声子贡献,而宽阱中,定域声子贡献大于界面和半空间声子贡献.有内建电场时,定域声子贡献变小,而界面和半空间声子贡献变大,声子总贡献也有明显变化.在In0.19Ga0.81N/GaN量子阱中,光学声子对束缚极化子能量和结合能的贡献比GaAs/Al0.19Ga0.81As量子阱中的相应贡献(约3.2—1.8和1.6—0.3 meV)约大一个数量级.阱宽(d=8 nm)不变时,在In0.19Ga0.81N/GaN量子阱中结合能随着杂质中心位置Z0的变大而减小,并减小的速度变快.随着Z0的增大,界面和半空间光学声子对结合能的贡献缓慢减小,而定域光学声子的贡献缓慢增大.  相似文献   

12.
Zhuang-Zhuang Zhao 《中国物理 B》2022,31(3):34208-034208
The 808-nm vertical cavity surface emitting laser (VCSEL) with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells is designed and fabricated. Compared with the VCSELs with Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells, the VCSEL with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells is demonstrated to possess higher power conversion efficiency (PCE) and better temperature stability. The maximum PCE of 43.8% for 10-μm VCSEL is achieved at an ambient temperature of 30 ℃. The size-dependent thermal characteristics are also analyzed by characterizing the spectral power and output power. It demonstrates that small oxide-aperture VCSELs are advantageous for temperature-stable performance.  相似文献   

13.
无限深量子阱中强耦合极化子的基态结合能   总被引:3,自引:0,他引:3  
李亚利  肖景林 《发光学报》2005,26(4):436-440
研究了无限深量子阱中极化子的基态性质,采用线性组合算符和变分相结合的方法导出了强耦合极化子的振动频率λ、基态能量E0和基态结合能Eb,讨论了阱宽L和电子-LO声子耦合强度α对强耦合极化子的振动频率λ、基态能量E0和基态结合能Eb的影响。通过数值计算,结果表明:强耦合极化子的振动频率和基态结合能随阱宽L的增大而减小,随电子-LO声子耦合强度α的增强而增大;基态能量随阱宽L的增大而减小,其绝对值随电子-LO声子耦合强度α的增强而增大;当量子阱阱宽L趋近于无限大和无限小两种极限情况下,分别与三维和二维极化子的结果相一致。  相似文献   

14.
刘炳灿  李华  严亮星  孙慧  田强 《物理学报》2013,62(19):197302-197302
本文用分数维方法研究AlxGa1-xAs衬底上GaAs薄膜中的极化子特性, 提出了确定GaAs薄膜的有效量子限制长度的一个新方法, 解决了原来方法中在衬底势垒处有效量子限制长度发散的困难, 得到了AlxGa1-xAs衬底上GaAs薄膜中的极化子的维数和结合能. 关键词: 分数维方法 极化子 GaAs薄膜  相似文献   

15.
杨鹏  吕燕伍  王鑫波 《物理学报》2015,64(19):197303-197303
本文研究AlN作为AlxGa1-xN/GaN插入层引起的电子输运性质的变化, 考虑了AlxGa1-xN和AlN势垒层的自发极化、压电极化对AlxGa1-xN/AlN/GaN双异质结高电子迁移率晶体管(HEMT)中极化电荷面密度、二维电子气(2DEG) 浓度的影响, 分析了AlN厚度与界面粗糙度散射和合金无序散射的关系; 结果表明, 2DEG 浓度、界面粗糙度散射和合金无序散射依赖于AlN层厚度, 插入一层1–3 nm薄的AlN层, 可以明显提高电子迁移率.  相似文献   

16.
压力下GaN/Ga1-xAlxN量子点中杂质态的界面效应   总被引:1,自引:1,他引:0       下载免费PDF全文
张敏  闫祖威 《发光学报》2009,30(4):529-534
考虑界面处导带弯曲,流体静压力以及有效质量随量子点位置的依赖性,采用变分法以及简化相干势近似,研究了无限高势垒GaN/Ga1-xAlxN球形量子点中杂质态的界面效应,计算了杂质态结合能随量子点尺寸、电子面密度以及压力的变化关系。结果表明,结合能随压力的增大呈线性增加的趋势,有效质量位置的依赖性以及导带弯曲对结合能有不容忽视的影响。  相似文献   

17.
Yi Li 《中国物理 B》2022,31(7):77801-077801
The optical polarization characteristics of surface plasmon (SP) coupled AlGaN-based light emitting diodes (LEDs) are investigated theoretically by analyzing the radiation recombination process and scattering process respectively. For the Al0.5Ga0.5N/Al/Al2O3 slab structure, the relative intensity of TE-polarized and TM-polarized spontaneous emission (SE) rate into the SP mode obviously depends on the thickness of the Al layer. The calculation results show that TM dominated emission will be transformed into TE dominated emission with the decrease of the Al thickness, while the emission intensities of both TE/TM polarizations will decrease significantly. In addition, compared with TM polarized emission, TE polarized emission is easier to be extracted by SP coupling. For the Al0.5Ga0.5N/Al nano-particle structure, the ratio of transmittance for TE/TM polarized emission can reach ~3.06, while for the Al free structure, it is only 1.2. Thus, the degree of polarization of SP coupled LED can be improved by the reasonable structural design.  相似文献   

18.
The energy levels and binding energies of a hydrogenic impurity in GaAs spherical quantum dots with radius R are calculated by the finite difference method. The system is assumed to have an infinite confining potential well with radius R, which can be viewed as a hard wall boundary condition. The parabolicity of the conduction band profile for GaAs material can be viewed as a parabolic potential well. The energy levels and binding energies are depended dramatically on the radius of the quantum dot and the parabolic potential well. The results show that parabolic potential can remarkably alter the energy level ordering and binding energy level ordering of hydrogenic impurity states for the quantum dot with a smaller radius R.  相似文献   

19.
Impurity optical absorption in parabolic quantum well   总被引:1,自引:0,他引:1  
Optical absorption in GaAs parabolic quantum well in the presence of hydrogenic impurity is considered. The absorption coefficient associated with the transitions between the upper valence subband and donor ground state is calculated. The impurity ground state wave function and energy are obtained using the variational method. Dependence of the absorption spectra on impurity position in quantum well was investigated. It is shown, that along with quantum well width decrease the absorption threshold shifts to higher frequencies. Results obtained within frames of parabolic approximation are compared with results for rectangular infinite-barrier quantum well case. The acceptor state → conduction band transitions considered as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号