首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Robinson–Wilczek's recent work shows that, the energy–momentum tensor flux required to cancel gravitational anomaly at the event horizon of a Schwarzschild-type black hole has an equivalent form to that of a (1+1)(1+1)-dimensional blackbody radiation at the Hawking temperature. Motivated by their work, Hawking radiation from the cosmological horizons of the general Schwarzschild–de Sitter and Kerr–de Sitter black holes, has been studied by the method of anomaly cancellation. The result shows that the absorbing gauge current and energy momentum tensor fluxes required to cancel gauge and gravitational anomalies at the cosmological horizon are precisely equal to those of Hawking radiation from it. It should be emphasized that the effective field theory for generic black holes in de Sitter spaces should be formulated within the region between the event horizon (EH) and the cosmological horizon (CH), to integrate out the classically irrelevant ingoing modes at the EH and the classically irrelevant outgoing modes at the CH, respectively.  相似文献   

3.
The thermal character of the inner horizon ofthe Kerr black hole is studied. There is a quantumthermal effect, Hawking absorption, nearthe inner horizon. We give a new formulation of the Bekenstein-Smarr formula and redefine theentropy of the black hole. The redefined entropy must goto zero as the temperature of the black hole approachesabsolute zero. The entropy satisfies the Nernst theorem, so it can be regarded as the Planckabsolute entropy of the Kerr black hole.  相似文献   

4.
In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non‐perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order , inexorably leads to a “localised” divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like . Therefore, while at a distance far away from the horizon, where , quantum corrections are perturbative, they do diverge close to the horizon, where . Nevertheless, these “corrections” nicely re‐sum so that correlations functions are smooth at the would‐be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes.  相似文献   

5.
A spherically symmetric uncharged regular black hole is proposed in this paper. The black hole’s density in proportion to $r^{3n}e^{-r^{3n+3}}$ , and the curvature tensor in the region of r=0 keep finity. When n=0 in our model, this spacetime is no other than Dymnikova regular black hole. What’s more, there are better properties in this spacetime when n>0. We then discuss the temperature and Hawking radiation of the black hole’s horizon.  相似文献   

6.
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh–Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein–Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter (\(\rho _{0}\)) were explicitly plotted. The results show that, when the deficit solid angle (\(\epsilon ^{2}\)) and the density of static spherically symmetric quintessence-like matter at \(r=1\) (\(\rho _{0}\)) vanish \((\rho _{0}=\epsilon =0)\), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing \(\rho _{0}\), the transition points are shifted to lower entropies. The same thing is observed when increasing \(\epsilon ^{2}\). In the absence of quintessence-like matter (\(\rho _{0}=0\)), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing \(\rho _{0}\) or \((\epsilon ^2)\).  相似文献   

7.
Hawking evaporation of photons in a Vaidya–de Sitter black hole is investigated by using the method of generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the time. It is shown that Hawking radiation of photons exists only for the complex Maxwell scalar 0 in the advanced Eddington–Finkelstein coordinate system. This asymmetry of Hawking radiation for different components of Maxwell fields probably arises from the asymmetry of spacetime in the advanced Eddington–Finkelstein coordinate system. It is shown that the black body radiant spectrum of photons resembles that of Klein–Gordon particles.  相似文献   

8.
The gravitational field of a black hole intrinsically creates a potential barrier consisted of two reflecting boundaries; the first one far from the hole and the second one in the vicinity of its horizon. With respect to this fact and assuming the boundaries as good conductors (in view of an observer near the horizon just outside the second boundary), in a series of papers, R.M. Nugayev by considering a conformally coupled massless scalar field and based on the calculations of Candelas and Deutsch (the accelerated-mirror results) has claimed that “...the existence of the potential barrier is as crucial for Hawking evaporation as the existence of the horizon”. In this paper, by taking the same assumptions, through straightforward reasonings, we explicitly show that contrary to this claim, the effects of the first boundary on the black hole radiation are quite negligible. Moreover, the inclusion of the second boundary makes the situation more complicated, because the induced Casimir energy-momentum tensor by this boundary in its vicinity is divergent of order \(\delta ^{-4}\) (δ is the distance to the boundary).  相似文献   

9.
In 1996, Rovelli suggested a connection between black hole entropy and the area spectrum. Using this formalism and a theorem we prove in this paper, we briefly show the procedure to calculate the quantum corrections to the Bekenstein–Hawking entropy. One can do this by two steps. First, one can calculate the “naive” black hole degeneracy without the projection constraint (in case of the $U(1)$ symmetry reduced framework) or the $SU(2)$ invariant subspace constraint (in case of the fully $SU(2)$ framework). Second, then one can impose the projection constraint or the $SU(2)$ invariant subspace constraint, obtaining logarithmic corrections to the Bekenstein–Hawking entropy. In this paper, we focus on the first step and show that we obtain infinite relations between the area spectrum and the naive black hole degeneracy. Promoting the naive black hole degeneracy into its approximation, we obtain the full solution to the infinite relations.  相似文献   

10.
We study the phase transition of rainbow inspired higher dimensional Schwarzschild black hole incorporating the effects of the generalized uncertainty principle. First, we obtain the relation between the mass and Hawking temperature of the rainbow inspired black hole taking into account the effects of the modified dispersion relation and the generalized uncertainty principle. The heat capacity is then computed from this relation which reveals that there are remnants. The entropy of the black hole is next obtained in \(3+1\) and \(4+1\)-dimensions and is found to have logarithmic corrections only in \(3+1\)-dimensions. We further investigate the local temperature, free energy and stability of the black hole in an isothermal cavity. From the analysis of the free energy, we find that there are two Hawking–Page type phase transitions in \(3+1\) and \(4+1\)-dimensions if we take into account the generalized uncertainty principle. However, in the absence of the generalized uncertainty principle, only one Hawking–Page type phase transition exists in spacetime dimensions greater than four.  相似文献   

11.
12.
A white hole (WH) is a time-reversed black hole (BH) solution in general relativity with a spacetime region to which cannot be entered from the outside. Recently they have been proposed as a possible solution to the information loss problem (Haggard et al. in Phys Rev D 92:104020, 2015). In particular it has been argued that the quantization of the gravitational field may prevent a BH from collapsing entirely with an exponential decay law associated to the black-hole-to-white-hole (BHWH) tunneling scenario (Barcelo et al. in Class Quantum Gravit 34:105007, 2017). During this period of BHWH transition the Hawking radiation should take place. Taking this possibility into account, we utilize the Hamilton–Jacobi and Parkih–Wilczek methods to study the Hawking radiation viewed as a quantum tunneling effect to calculate the tunneling rate of vector particles tunneling inside (outside) the horizon of a WH (BH), respectively. We show that there is a Hawking radiation associated to a WH spacetime equal to the BH Hawking temperature when viewed from the outside region of the WH geometry. In the framework of Parkih–Wilczek method, surprisingly, we show that Hawking temperature is affected by the initial radial distance at which the gravitational collapse starts.  相似文献   

13.
In this paper, we extend Parikh’ work to the non-stationary black hole, a non-static black hole with the internal global monopole. We view Hawking radiation as a tunneling process across the event horizon and calculate the tunneling probability. We find that the result is different from Parikh’s work because is the function of Bondi mass m(v).  相似文献   

14.
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1)U(1) gauge field of the reduced (1+1)(1+1)-dimensional theory. It is found that the terms in this U(1)U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.  相似文献   

15.
In this study, the quantum gravity effect on the tunnelling radiation of charged massive spin-0 scalar particle from \(2+1\) dimensional charged rotating Banados–Teitelboim–Zanelli (BTZ) black hole is looked into by using the Hamilton–Jacobi approach. For this, we calculate the modified Hawking temperature of the black hole by using the modified Klein–Gordon equation based on the generalized uncertainty principle, and we noticed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the angular momentum, energy, charge and mass of the tunnelling scalar particle. Using the modified Hawking temperature, we discussed the stability of the black hole in the context of the modified heat capacity, and observed that it might undergo both first and 1 phase transitions in the presence of the quantum gravity effect, but just a first-type transition in the absence of the quantum gravity effect. Furthermore, we investigated the modified Hawking temperature of the black hole by using the tunnelling processes of the charged massive Dirac and vector boson particles. We observed that scalar, Dirac and vector particles are tunnelled from the black hole completely differently from each other in the presence of the quantum gravity effect.  相似文献   

16.
Extending Parikh-Wilczek’s semi-classical tunneling method, we discuss the Hawking radiation of the charged massive particles via tunneling from the cosmological horizon of (n+2)-dimensional Topological Reissner-Nordström-de Sitter black hole.The result shows that, when energy conservation and electric charge conservation are taken into account, the derived spectrum deviates from the pure thermal one, but satisfies the unitary theory, which provides a probability for the solution of the information loss paradox.  相似文献   

17.
The minimum interval of event horizon area of Rerssner-Nordström black hole was calculated via using the loop quantum gravity theory. Based on the first law of black hole thermodynamics, the real part of quasi-normal modes frequency of the black hole was calculated. The expression of asymptotically quasi-normal mode frequency of Rerssner-Nordström black hole was deduced strictly. By analyzing the value of the minimum spin j m i n , the two families of quasi-normal mode spectra of the charged black hole were obtained for j m i n = 1/2 and j m i n = 1 respectively. Our conclusion is in complete agreement with the analytical results of Hod. Our results provide the theoretical basis for the source of the real part of the quasi-normal mode frequency of the black hole.  相似文献   

18.
Jieci Wang 《Annals of Physics》2010,325(6):1190-500
It is shown that the projective measurements made by Bob who locates near the event horizon of the Schwarzschild black hole will create entangled particles detected by Alice who stays stationary at the asymptotically flat region. It is found that the degree of entanglement decreases as the frequency of the detected particles increases and approaches to zero as the frequency ωk → ∞. It is also noted that the degree of entanglement increases as the Hawking temperature increases. Especially, the particle state is unentangled when the Hawking temperature is zero and approaches a maximally entangled Bell state when the black hole evaporates completely.  相似文献   

19.
Quasi-periodic oscillations (QPOs) of the hot plasma spots or clumps orbiting an accreting black hole contain information on the black hole mass and spin. The promising observational signatures for the measurement of black hole mass and spin are the latitudinal oscillation frequency of the bright spots in the accretion flow and the frequency of black hole event horizon rotation. Both of these frequencies are independent of the accretion model and defined completely by the properties of the black hole gravitational field. Interpretation of the known QPO data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, \(a=0.65\pm 0.05\) , and mass, \(M=(4.2\pm 0.2)10^6M_\odot \) , of the supermassive black hole in the Galactic center. At the same time, the observed 11.5 min QPO period is identified with a period of the black hole event horizon rotation, and, respectively, the 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow. The described approach is applicable to black holes with a low accretion rate, when accreting plasma is transparent up to the event horizon region.  相似文献   

20.
A standard Virasoro subalgebra for a static dilaton black hole obtained in the low-energy effective field theory describing heterotic string is constructed at a Killing horizon. The statistical entropies of the Garfinkle–Horowitz–Strominger dilaton black hole and the Gibbons–Maeda dilaton black hole obtained by standard Cardy formula agree with their Bekenstein–Hawking entropies only if we take period T of function as the periodicity of the Euclidean black hole. We also consider first-order quantum correction to the entropy and find that the correction is described by a logarithmic term with a factor of , which is different from Kaul and Majumdar's factor of .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号