首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An x-ray diffraction study of defect formation in silicon irradiated by Kr+ (210 MeV, 8×1012−3×1014 cm−2) and Xe+ (5.6 BeV, 5×1011−5×1013 cm−2) ions is reported. It has been established that irradiation produces a defect structure in the bulk of silicon, which consists of ion tracks whose density of material is lower than that of the host. The specific features of defect formation are discussed taking into account the channeling of part of the ions along the previously formed tracks and the dominant role of electron losses suffered by the high-energy ions. It is shown that the efficiency of incorporation of stable defects by irradiation with high-energy ions is lower than that reached by implanting medium-mass ions with energies of a few hundred keV. Fiz. Tverd. Tela (St. Petersburg) 40, 1627–1630 (September 1998)  相似文献   

2.
Resistance changes in thin films of copper, aluminium and bismuth have been studied under the bombardment of nitrogen, carbon and argon ions. Variations in resistance with implantation dose have been observed upto doses of ∼ 3 × 1017 ions/cm2 for ion energies in the range 40 to 120 keV. The results are discussed in terms of desorption of gases from the film and a composite action of sputter removal of the film and its structural changes upon ion bombardment. A simple theoretical model is discussed which can qualitatively explain the experimental observations.  相似文献   

3.
The results of studying the redistribution of Be, Al, Ti, Fe, Cu, Zr, Mo, and W atoms incorporated in polycrystalline metal samples under irradiation with He+, (He+ + Ar+), and Ar+ ion beams with a broad energy spectrum and an average energy of 10 keV at irradiation doses of 1 × 1021 ion/cm2 are studied. It is discovered that irradiation at doses exceeding 1 × 1019 ion/cm2 results in local small-crystal formations being produced in a near-surface substrate layer. Their typical dimensions are less than 1–5 μm, and their the density is up to 1–100. They contain incorporated atoms and impurity atoms with a concentration of 0.1–10 at %. Subsequent irradiation at a dose of 1 × 1020 ions/cm2 or more leads to disappearance of these formations, mainly because of sputtering processes.  相似文献   

4.
The β-SiC nanocrystals were synthesized by the implantation of carbon ions (C) into silicon followed by high-temperature annealing. The carbon fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms/cm2 were implanted at an ion energy of 65 keV. It was observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100 °C for 1 h. However, it was observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms/cm2. Above this fluence the amount of β-SiC appears to saturate. The Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, and X-ray diffraction (XRD) techniques were used to characterize the samples.  相似文献   

5.
We have used photostimulated flash luminescence to study deep electronic states arising when silver ions Ag+ are deposited under high vacuum onto the surface of a ZnS single crystal, followed by creation of the conditions for neutralization of the silver ions. The flux density of the silver ion beam was 107 cm−2·sec−1. We have observed the appearance of two types of deep electronic states with photoionization energies 1.60 eV and 1.80 eV, arising after depositing the silver ions onto the surface of the ZnS single crystal. We have hypothesized that there may be two different preferred sites for adsorption of silver atoms on the zinc sulfide surface. The corresponding photoionization spectra of the adsorbed silver atoms have maxima at 775 nm and 690 nm. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 3, pp. 335–338, May–June, 2006.  相似文献   

6.
This paper describes blistering of rhenium following 21 keV He+-ion irradiation at temperatures between 300 K and 1200 K. Blistering starts at 300 K at a dose of 3×1017 ions/cm2. The most probable blister diameter varies from 4400 ? at 300 K to 10100 ? at 1200 K. The blister depth τ bl , the blister diameter φ bl and the blister heighth bi show a distribution. From the observations one could derive the following relationships:h bl = 0.35φ bl ; τ bl =3.43φ bl 2/3 . The erosion yieldE y due to blistering is function of doseE y =0.51 atoms/ion at 3×1017 ions/cm2,E y =0.56 atoms/ion at 6×1017 ions/cm2 andE y =0.14 atoms/ion at 3×1018 ions/cm2. The sputtering yieldS (21 keV) is estimated to be ∼0.1 atom/ion. The corresponding surface regression is 44? at 3×1017 ions/cm2 and 1323 ? at 9×1018 ions/cm2. Surface regression has therefore little influence on the observations at low doses. Work performed at the Mathematicals Science Department of S.C.K./C.E.N. at Mol (Belgium)  相似文献   

7.
Structure in the Raman scattering spectra of near-surface n-GaAs layers (n=2×1018 cm−3) implanted with 100 keV B+ ions in the dose range 3.1×1011–1.2×1014 cm−2 is investigated. The qualitative and quantitative data on the carrier density and mobility and on the degree of amorphization of the crystal lattice and the parameters of the nanocrystalline phase as a result of ion implantation are obtained using a method proposed for analyzing room-temperature Raman spectra. Fiz. Tverd. Tela (St. Petersburg) 41, 1495–1498 (August 1999)  相似文献   

8.
The initial stages of formation of an Yb-Si(111) interface are investigated by several methods: thermal desorption spectroscopy, atomic beam modulation, and low-energy electron diffraction. The structure of the adsorbed films and ytterbium silicide films is analyzed over a wide range of surface coverage ratios, along with the desorption kinetics of Yb atoms. The desorption activation energies of Yb atoms are measured for 3×2, 5×1, and 2×1 submonolayer structures. The temperature interval in which ytterbium silicide decomposes and the activation energy of this process are determined. It is shown that the Yb-Si(111) phase interface evolves by a mechanism similar to the Stransky-Krastanov mechanism. Fiz. Tverd. Tela (St. Petersburg) 39, 256–263 (February 1997)  相似文献   

9.
The plasma plume induced during ArF laser ablation of a graphite target is studied. Velocities of the plasma expansion front are determined by the optical time of flight method. Mass center velocities of the emitting atoms and ions are constant and amount to 1.7×104 and 3.8×104 m s−1, respectively. Higher velocities of ions result probably from their acceleration in electrostatic field created by electron emission prior to ion emission. The emission spectroscopy of the plasma plume is used to determine the electron densities and temperatures at various distances from the target. The electron density is determined from the Stark broadening of the Ca II and Ca I lines. It reaches a maximum of ∼9.5×1023 m−3 30 ns from the beginning of the laser pulse at the distance of 1.2 mm from the target and next decreases to ∼1.2×1022 m−3 at the distance of 7.6 mm from the target. The electron temperature is determined from the ratio of intensities of ionic and atomic lines. Close to the target the electron temperature of ∼30 kK is found but it decreases quickly to 11.5 kK 4 mm from the target.  相似文献   

10.
J.L. Pen̄a 《Surface science》1981,109(3):L550-L554
AES studies of argon ion induced desorption of carbon from tantalum were performed. The carbon adlayer was allowed to adsorb from a well characterized residual gas atmosphere, that was unvarying within 20%. The argon ions impact on the surface at an angle of 60° from the surface normal with energies between 0.2 to 1.0 keV. The total desorption cross section values measured under these conditions are 0.07–1.1 × 10?15 cm2.  相似文献   

11.
This paper reports on a study of the electron-stimulated desorption of negative oxygen ions from the O/Ru surface, which represents an additional factor responsible for the destruction of the protective oxide layer of the mirrors used in ultraviolet lithography. The cross section of degradation of the O/Ru layer due to the electron-stimulated desorption of the O+ and O ions and the O atoms has been found to be 1.6 × 10−19 cm2. A comparison of the dependences of the electron-stimulated desorption yield of O+ and O ions on the incident electron energy E with the ionization cross section of the adsorbate core level σ O2s (E) has revealed that the ionization of the O 2s level is the main channel of the electron-stimulated desorption of O ions.  相似文献   

12.
The time-of-flight technique combined with a surface-ionization-based detector has been used to investigate the yield and energy distribution of sodium atoms escaping in electron-stimulated desorption (ESD) from adlayers on the surface of molybdenum oxidized to various degrees and maintained at T=300 K as functions of incident electron energy and surface coverage by sodium. The sodium-atom ESD threshold is about 25 eV, irrespective of sodium coverage and extent of molybdenum oxidation. Molybdenum covered by an oxygen monolayer exhibits secondary thresholds at ∼40 eV and ∼70 eV, as well as low-energy tailing of the energy distributions, its extent increasing with surface coverage by sodium Θ. The most probable kinetic energies of sodium atoms are about 0.23 eV, irrespective of the degree of molybdenum oxidation and incident electron energy at Θ=0.125, and decrease to 0.17 eV as the coverage grows to Θ=0.75. The results obtained are interpreted within a model of Augerstimulated desorption, in which adsorbed sodium ions are neutralized by Auger electrons appearing as the core holes in the 2sO, 4sMo, and 4pMo levels are filled. It has been found that the appearance of secondary thresholds in ESD of neutrals, as well as the extent of their energy distributions, depend on surface coverage by the adsorbate. Fiz. Tverd. Tela (St. Petersburg) 40, 768–772 (April 1998)  相似文献   

13.
A new method of stimulating secondary negative ion emission is suggested that is based on implantation of alkaline ions into the surface layer of a solid with subsequent heating to a temperature providing optimal coverage of the surface (about half a monolayer) by activator (alkaline) ions. It is shown that, by appropriately selecting the implantation dose (1018–1019 cm−3) and surface temperature (500–900°C), one can reach such a degree of coverage of the sample surface by activator ions that its work function eφ becomes minimal: 1.9 eV for molybdenum and 2.1 eV for copper. It is found that, with the implantation (irradiation) dose and surface temperature chosen properly, one can, by means of outdiffusion of cesium atoms, achieve such a degree of surface coverage that remains unchanged during the continuous sputtering of the surface by a cesium ion beam.  相似文献   

14.
Using polarization-modulated ellipsometry to monitor adsorbate coverage in-situ, we studied the activated adsorption of filament-heated molecular hydrogen on Cu(111) and subsequent isothermal desorption of hydrogen adatoms. The adsorption is characterized by a zeroth-order kinetic with a constant sticking probability of S0=0.0062 up to θ=0.25, followed by a Langmuir kinetic until the saturation coverage θs=0.5 is reached. The desorption follows a second-order kinetic with an activation energy of 0.63 eV and a pre-exponential factor of 1×109 /s. A pre-adsorbed monolayer of Xe atoms on Cu(111), with a desorption activation energy of 0.25 eV and a pre-exponential factor of 8×1014 /s, efficiently blocks the subsequent adsorption of hot molecular hydrogen, making physisorbedXe useful as templates for spatial patterning of hydrogen adatom density on Cu(111). PACS 68.43.Jk; 78.68.+m; 81.15.-z; 82.40.Np  相似文献   

15.
The yield and energy distributions of potassium and cesium atoms emitted in electron-stimulated desorption (ESD) from a molybdenum surface, oxidized to different extent and maintained at 300 K, have been measured by the time-of-flight technique with a surface ionization detector. The ESD threshold for potassium and cesium atoms lies around 25 eV, irrespective of molybdenum oxidation state. In the case of molybdenum coated by an oxygen monolayer, secondary thresholds at ∼40 and ∼70 eV have been observed, as well as atomic energy distribution tailing down to very low energies. The most probable kinetic energies of the atoms are a few tenths of one eV. The results are explained within a model involving Auger neutralization of the adsorbed alkali metal ions after the filling of the 2s O, 4s Mo, and 4p Mo core holes. The possibility of ESD of a neutral species as a result of oxide-cation core-level ionization has been demonstrated for the first time. Fiz. Tverd. Tela (St. Petersburg) 39, 758–761 (April 1997)  相似文献   

16.
Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.  相似文献   

17.
Emission spectra and the energy distribution of the excited-state population density of atoms and ions in erosion laser plasma from CuInS2 with various crystal-structure orderings are analyzed. It is shown that increased ordering of the target crystal structure causes the excited-state energies of indium atoms generated in the laser erosion plume to increase and that sulfur atoms always emit only in transitions from highly excited states. The ratio of relative ion concentrations in the laser plasma plume is Cu+/In+/S+ = 0.3/0.08/2, which corresponds neither to the atomic ratio of Cu/In/S (1/1/2) in the target nor to the ratio of ionization energies. The results are explained by recombination processes for ions and by the atomization specifics of the CuInS2 target exposed to long-wavelength radiation. The atomization consists essentially of dissociative processes expressed by CuInS2 → CuInS + S and CuInS2 → Cu + InS + S. The electron temperature of polycrystal (single-crystal) plasma at a distance of 1 mm from the target is 0.3 eV (0.4 eV) for atoms and 1.3 eV (2.7 eV) for ions and varies negligibly for plasma up to a distance of 7 mm from the target. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 217–223, March–April, 2008.  相似文献   

18.
A wide variety of material modifications in polymers have been studied by using ion irradiation techniques. Extensive research has focused on to Swift Heavy Ions (MeV’s energy), probably because of good controllability and the large penetration length in polymers. High energy ion irradiation tends to damage polymers significantly by electronic excitation and ionization. It may result into the creation of latent tracks and can also cause formation of radicals such as ablation, sputtering, chain scission and intermolecular cross-linking, creation of triple bonds and unsaturated bonds and loss volatile fragments. Polypropylene polymer films of thickness 50 μm were irradiated to the fluences of 1 × 1010, 3 × 1010, 1 × 1011, 3 × 1011, 6 × 1011 and 1 × 1012 ions/cm2 with Si8+ ions of 100 MeV energy from Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV to the fluences of 108, 1010, 1011, 1012 and 1013 ions/cm3 from Variable Energy Cyclotron Centre, Kolkata. Optical modifications were characterized by UV towards the red end of the spectrum with the increase of the fluence. Value of optical band gap E g shows a decreasing trend with ion fluence irradiated with both kinds of ions. Cluster size N, the number of carbon atoms per conjugation length increases with increasing ion dose. Cluster size also increases with the increase of electronic stopping power.   相似文献   

19.
The kinetics of photoinduced absorption spectra of CdF2 crystals with bistable indium and gallium centers under femtosecond pulsed excitation has been experimentally investigated. Based on the example of indium ions, it is shown that the transmission band in the absorption spectrum of deep centers is formed for 0.8–1 ps, which significantly exceeds the photon absorption time. This process is interpreted as a result of displacement of indium ion from the initial interstitial position to a site of neighboring unit cell; the displacement velocity is estimated to be 200–250 m/s, a value close to the thermal velocity of this ion at room temperature. The times characteristic of the formation of free polarons as a result of the displacement of neighboring lattice ions have been experimentally estimated for the first time at a level of 0.8–1.2 ps. The capture times of free polarons by trivalent gallium and indium ions are estimated (5 and 10 ps, respectively), as well as the corresponding cross sections (2 × 10−16 and 8 × 10−16 cm2).  相似文献   

20.
The samples of polypropylene (PP) have been irradiated with 120 MeV 64Cu9+ and 70 MeV 12C5+ ion beams, with the fluence ranging from 1 × 1013 to 1 × 1011 ions/-cm−2. UV-VIS and FTIR techniques have been used to study the chemical and optical properties of these irradiated polymers. UV spectra revealed that the optical-gap energy decreases by 54 % with copper ion irradiation at the fluence of 1 × 1013 ions/cm2, whereas at the same fluence, carbon beam decreases the optical-gap energy by 20%. FTIR analysis of ion irradiated samples revealed the presence of -OH, C = O and C = C bonds. Alkyne formation has been observed only in the case of copper ion irradiation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号