首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO2 nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO2 content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.  相似文献   

2.
Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy (γp), interfacial free energy (γpw), and the adhesive work (Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.  相似文献   

3.
A superhydrophobic surface was obtained by embedding hydrophobically modified fumed silica (HMFS) particles in polyvinylidene fluoride (PVDF) matrix. The water contact angle (WCA) on the PVDF-HMFS hybrid composite coating is influenced by the content and nature of silica particles in the coating. As the silica concentration in PVDF matrix was increased from 33.3% to 71.4%, WCA increased from 117° to 168° and the sliding angle decreased from 90° to <1°. Surface topography of the coating was examined using scanning electron microscopy. An irregular rough surface structure composed of microcavities and nanofilaments was found to be responsible for the superhydrophobicity. The method is simple and cost-effective and can be used for preparing self-cleaning superhydrophobic coating on large areas of different substrates.  相似文献   

4.
Stable superhydrophobic surfaces were fabricated on the zinc substrates through simple silver replacement deposition process with the modification of octadecyl mercaptan. The effects of reaction conditions on the surface morphology and wettability of the prepared surfaces were carefully studied. The results show that the fabrication of a best superhydrophobic surface depends largely on the moderate reactant concentration. When the concentration of AgNO3 solution was 2 mmol/L, the zinc substrate was covered by a dendritic outline structure. Aggregated silver nanoparticles were formed on the substrate in accordance with some certain laws, exhibiting great surface roughness. The typical hierarchical micro-nanostructures, flower-like structures and porous structures also could be found from the SEM images. The maximal water contact angle (CA) value of about 161 ± 2°, and the minimal sliding angle (SA) of about 2° were obtained under the same reaction condition.  相似文献   

5.
Superhydrophobic surface was prepared by sol-gel method on aluminum substrate via immersing the clean pure aluminum substrate into the solution of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetraamine (C6H12N4) at different molar ratios and unchanged 0.04 mol/L total concentration, then heated at 95 °C in water bath for 1.5 h, subsequently modified with 18 alkanethiols or stearic acid. When the molar ratios of Zn(NO3)2·6H2O and C6H12N4 were changed from 10:1 to 1:1 the contact angle was higher than 150°. The best prepared surface had a high water contact angle of about 154.8°, as well as low angle hysteresis of about 3°. The surface of prepared films using Zn(NO3)2·6H2O and C6H12N4 composed of ZnO and Zn-Al LDH, and Al. SEM images of the film showed that the resulting surface exhibits different flower-shaped wurtzite zinc oxide microstructure and porous Zn-Al LDH. The special flowerlike and porous architecture, along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

6.
Superhydrophobic poly(methyl methacrylate)-SiO2 (coded as PMMA-SiO2) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO2) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO2 nanocomposite films was investigated in relation to the dosage of SiO2 nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO2 nanocomposite films when hydrophobic SiO2 nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO2 nanocomposite films had a static water contact angle of above 162°, showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.  相似文献   

7.
A novel two-step methodology is successfully developed to fabricate superhydrophobic surfaces of aluminum alloys. The essential procedure is that samples are first immersed and etched in a boiling aqueous solution of NaOH for 5 min without preprocessing, and then they are modified for 30 min in an ethanol solution of lauric acid, cheaper and more efficient than the fluorinated silane frequently adopted by other researchers. If the concentration of NaOH solution is larger than 5 g/L, the contact angle of the prepared surfaces will be larger than 150° with a negligible hysteresis. Such a fast, low-cost, and reliable method for superhydrophobic surfaces implies significant promising industrial applications.  相似文献   

8.
The present work reports a simple method to produce the aluminum superhydrophobic surface based on an interface reaction between an aluminum foil and zinc aqueous solution. The products were characterized by field-emission scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectrum. The field-emission scanning electron microscopy images show that the coating surface is composed of micro/nanoscale binary structure, which is similar to the structure of lotus leaf. The wettability of the coating surface was also investigated. It was found that after treatment with stearic acid, the wettability of the aluminum foil changed from superhydrophilic to water-repellent superhydrophobic. The complex micro/nanoscale binary structures along with the low surface energy lead to the high surface superhydrophobicity.  相似文献   

9.
The present work reports a simple and time-saving method to fabricate cupric stearate film on zinc substrate by a solution-immersion process. Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering its surface energy. The fabrication of superhydrophobic cupric stearate surface is reported using a one-step process by immersing a zinc plate coated with copper into the stearic acid solution, simplifying the complexity of two different steps involved in the conventional methods. The surface of the zinc plate coated with copper is found to be covered with low surface energy cupric stearate film providing the water contact angle of 160 ± 1° with the rolling off properties. In addition, the damaged superhydrophobic surface can restore superhydrophobicity property by immersing the surface into the stearic acid solution again.  相似文献   

10.
A novel approach was used to grow nanostructured Teflon-like superhydrophobic coatings on stainless steel (SS). In this method Teflon tailings were pyrolyzed to generate fluorocarbon precursor molecules, and an expanding plasma arc (EPA) was used to polymerize these precursors to deposit Teflon-like coating. The coating shows super hydrophobic behavior with water contact angle (WCA) of 165°. The coating was observed to be uniform. It consists of nanostructured (∼80-200 nm) features, which were confirmed by scanning electron microscopy. The chemical bond state of the film was determined by XPS and FTIR, which indicate the dominance of -CF2 groups in the deposited coating. The combination of nanofeature induced surface roughness and the low surface energy imparted by Teflon-like coating is responsible for the observed superhydrophobic nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号