首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.  相似文献   

2.
The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature Tabs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i1, i2, i3) phases, and three coexistence or mixed phase regions, namely i1+p, i2+p and i3+p mixed phases that strongly depend on interaction parameters.  相似文献   

3.
Wei Jiang  Veng-cheong Lo  Jun Yang 《Physica A》2010,389(11):2227-1047
A molecular-based magnetic material AFeIIFeIII(C2O4)3 (A = organic cation) with a honeycomb structure is studied. The molecular-based magnet system consists of mixed spin-2 and spin- 5/2 honeycomb lattices with ferrimagnetic interlayer coupling. The magnetization, hysteresis loops and initial susceptibility have been calculated using a numerical method which includes both the longitudinal and transverse fields. We investigated the magnetic reversal of the system and found the existence of triple hysteresis loop patterns, affected by the anisotropy, longitudinal and transverse fields, and interlayer and intralayer exchange.  相似文献   

4.
Bayram Deviren  Mehmet Erta? 《Physica A》2010,389(10):2036-2047
An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the (Δ/|J|, kBT/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.  相似文献   

5.
The dynamic behavior of a mixed spin-1 and spin-2 Ising system with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1σ=1 and S=2. The Hamiltonian model includes intersublattice, intrasublattice and crystal-field interactions. The set of mean-field dynamic equations is obtained by employing the Glauber transition rates. Firstly, we study time variations of the average sublattice magnetizations in order to find the phases in the system, and the thermal behavior of the average sublattice magnetizations in a period or the dynamic sublattice magnetizations to obtain the dynamic phase transition points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the dynamic total magnetization as a function of the temperature is investigated to find the dynamic compensation points as well as determine the type of behavior. We also present the dynamic phase diagrams for both presence and absence of the dynamic compensation temperatures in the nine different planes. According to the values of Hamiltonian parameters, besides the paramagnetic (p), antiferromagnetic (af), ferrimagnetic (i) and non-magnetic (nm) fundamental phases, eight different mixed phases and the compensation temperature or L- and N-types behavior in the Néel classification nomenclature exist in the system.  相似文献   

6.
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.  相似文献   

7.
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F2) and three coexistence or mixed phase regions, namely the F2+P, F1+P and F2+F1+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior.  相似文献   

8.
9.
We calculate the dynamic phase transition (DPT) temperatures and present the dynamic phase diagrams in the kinetic mixed spin-1/2 and spin-5/2 Ising model under the presence of a time-dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the set of mean-field dynamic equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The DPT points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain four fundamental phases and three coexistence or mixed phases, which strongly depend on interaction parameters. The phase diagrams are discussed and a comparison is made with the results of the other mixed spin Ising systems.  相似文献   

10.
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h0/zJ) and (T/zJ, D/zJ), where T absolute temperature, h0, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z).  相似文献   

11.
The phase diagrams in the mixed spin-3/2 and spin-2 Ising system with two alternative layers on a honeycomb lattice are investigated and discussed by the use of the effective-field theory with correlations. The interaction of the nearest-neighbour spins of each layer is taken to be positive (ferromagnetic interaction) and the interaction of the adjacent spins of the nearest-neighbour layers is considered to be either positive or negative (ferromagnetic or anti-ferromagnetic interaction). The temperature dependence of the layer magnetizations of the system is examined to characterize the nature (continuous or discontinuous) of the phase transitions and obtain the phase transition temperatures. The system exhibits both second-and first-order phase transitions besides triple point (T P ), critical end point (E), multicritical point (A), isolated critical point (C) and reentrant behaviour depending on the interaction parameters. We have also studied the temperature dependence of the total magnetization to find the compensation points, as well as to determine the type of behaviour, and N-type behaviour in N′eel classification nomenclature existing in the system. The phase diagrams are constructed in eight different planes and it is found that the system also presents the compensation phenomena depending on the sign of the bilinear exchange interactions.  相似文献   

12.
Bayram Deviren  Osman Canko 《Physica A》2009,388(9):1835-1848
The magnetic properties of an anti-ferromagnetic and ferrimagnetic mixed spin-1/2 and spin-5/2 Ising model with a crystal field in a longitudinal magnetic field on the honeycomb (z=3) and square lattice (z=4) are studied by using the effective-field theory with correlations. The ground state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice and total magnetizations, and present the phase diagrams in the (Δ/|J|, ) plane. The phase diagrams have one, two or even three compensation temperatures depending on the values of the crystal-field interaction. Moreover, the susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field.  相似文献   

13.
57Fe Mössbauer and magnetometric studies of the molecular ferrimagnet N(n-C5H11)4 [ FeIIFeIII(C2O4)3] are indicative of a 2D magnetic character with strong uniaxial anisotropy in the basal plane of the crystal. It is established that the change in the sign of the net magnetization of this compound is related to a compensation between FeIII and FeII sublattice magnetizations at T comp=31.2 K. The form and parameters of the magnetic Hamiltonian describing the temperature dependence of the FeIII sublattice and the net magnetizations are determined.  相似文献   

14.
The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical (•), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results.  相似文献   

15.
The mixed spin-(1/2, 1) Ising chain with axial and rhombic zero-field splitting parameters in the presence of the longitudinal magnetic field is exactly solved within the framework of decoration-iteration transformation and transfer-matrix method. Our particular emphasis is laid on an investigation of the influence of the rhombic term, which is responsible for an onset of quantum entanglement between two magnetic states Skz=±1 of the spin-1 atoms. It is shown that the rhombic term gradually destroys a classical ferrimagnetic order in the ground state and simultaneously causes diversity in magnetization curves including intermediate plateau regions, regions with a continuous change in the magnetization as well as several unusual field-induced transitions accompanied with magnetization jumps. Another interesting findings concern with an appearance of the round minimum in the temperature dependence of susceptibility times temperature data, the double-peak zero-field specific heat curves and the enhanced magnetocaloric effect. The temperature dependence of the specific heat with three separate maxima may also be detected when driving the system through the axial and rhombic zero-field splitting parameters close enough to a phase boundary between the ferrimagnetic and disordered states and applying sufficiently small longitudinal magnetic field.  相似文献   

16.
The magnetic behaviors of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system on a square lattice are studied with the mean-field approximation (MFA) based on the Bogoliubov inequality for the free energy. A Landau expansion of the free energy in the order parameter is also described in this work. In particular, we investigate the effect of a single-ion anisotropy on the compensation phenomenon.  相似文献   

17.
I studied the ferrimagnetic Ising model with nearest neighbour interactions for a square lattice and simple cubic one, using mean field theory. The free energy of a mixed spin Ising ferrimagnetic model was calculated from a mean field approximation of the Hamiltonian. By minimizing the free energy, I obtained the equilibrium magnetizations and the compensation temperatures. Clear indications of the single-ion anisotropies on the compensation points of the mixed spin-3/2 and spin-5/2 ferrimagnetic lattices are found. Some interesting behaviors of these systems are obtained depending not only on the values of magnetic anisotropies for both sublattice sites but also on the lattice structure. The longitudinal magnetic fields dependence of the spin compensation temperature is the main focus of research. The possibility of many compensation temperatures is indicated.  相似文献   

18.
An effective-field theory with correlations is developed for a mixed spin-1 and spin-3/2 Ising system with two alternative layers of a honeycomb lattice. Spin-1 atoms and spin-3/2 atoms are distributed in alternative layers of a honeycomb lattice. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the interaction between the vertically aligned spins and adjacent spins are coupled either ferromagnetically or antiferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the temperature dependence of the total magnetization to find the compensation points and to determine the type of compensation behavior. We present the phase diagrams in different planes for h=0, and the phase diagrams contain the paramagnetic, nonmagnetic and ferrimagnetic phases. The system also presents a tricritical behavior besides multicritical point (A), isolated critical point (C) and double critical end point (B) depending on the interaction parameters.  相似文献   

19.
Godoy et al. (Phys. Rev. B 69, 054428, 2004) presented a study of the magnetic properties of a mixed spin (1/2,1), Ising ferrimagnetic model on a hexagonal lattice without an oscillating magnetic field. They employed dynamic mean-field calculations and Monte Carlo simulations to find the compensation point of the model and to present the phase diagrams. It has been found that the N-type compensation temperature appears only when the intrasublattice interaction between spins in the σ sublattice is ferromagnetic. Moreover, the system only undergoes a second-order phase transition. In this work, we extend the study a dynamic compensation temperature of a mixed spin-1/2 and spin-1 Ising ferrimagnetic system on a hexagonal lattice in the presence of oscillating magnetic field within the framework of dynamic mean-field calculations. We find that the system displays the N-type compensation temperature. We also calculate dynamic phase diagrams in which contain the paramagnetic, ferrimagnetic, nonmagnetic fundamental phases and two different mixed phases, depending on the interaction parameters and oscillating magnetic field. The system also exhibits tricritical and reentrant behaviors.  相似文献   

20.
We study the dynamic phase transitions and present the dynamic phase diagrams of the spin-1/2 Ising system under the presence of a time-varying (sinusoidal) external magnetic field within the path probability method (PPM) of Kikuchi and we observe that the PPM gives exactly the same result as with the Glauber-type stochastic dynamics based on the mean-field theory (DMFT). We also investigate the influence of the rate constant on the dynamic phase diagrams in detail and five new and interesting dynamic phase diagrams are found. We notice that the derivation of the dynamic equations by using the PPM is more clear and easier than within the DMFT and the Glauber-type stochastic dynamics based on the effective-field theory (DEFT). The advantages and disadvantages of the PPM over the DMFT and DEFT are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号