首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li-ion rechargeable batteries based on polymer electrolytes are of great interest for solid state electrochemical devices nowadays. Many studies have been carried out to improve the ionic conductivity of polymer electrolytes, which include polymer blending, incorporating plasticizers and filler additives in the electrolyte systems. This paper describes the effects of incorporating nano-sized MnO2 filler on the ionic conductivity enhancement of a plasticized polymer blend PMMA–PEO–LiClO4–EC electrolyte system. The maximum conductivity achieved is within the range of 10−3 S cm−1 by optimizing the composition of the polymers, salts, plasticizer, and filler. The temperature dependence of the polymer conductivity obeys the VTF relationship. DSC and XRD studies are carried out to clarify the complex formation between the polymers, salts, and plasticizer.  相似文献   

2.
The plasticized polymer electrolyte consisting of poly(epichlorohydrin-ethyleneoxide) [P(ECH-EO)], lithium perchlorate (LiClO4) and γ-butyrolactone (γ-BL) have been prepared by simple solution casting technique. The polymer–salt–plasticizer complex has been confirmed by XRD analysis. The ionic conductivity studies have been carried out using AC impedance technique. The effect of plasticizer (γ-BL) on ionic conductivity has been discussed with respect to different temperatures. The maximum value of ionic conductivity is found to be 1.3 × 10−4 Scm−1 for 70P(ECH-EO):15γ-BL:15LiClO4 at 303 K. The temperature dependence of the plasticized polymer electrolyte follows the Vogel–Tamman–Fulcher formalism. The activation energy is found to decrease with the increase in plasticizer.  相似文献   

3.
Y. Alias  I. Ling  K. Kumutha 《Ionics》2005,11(5-6):414-417
Gel polymer electrolytes consisting of 49% PMMA grafted polyisoprene-LiCF3SO3, were plasticized with propylene carbonate (PC) are reported. The effect of PC on the electrochemical properties of the polymer electrolyte has been investigated. Analysis of FTIR spectra shows the interaction of salt and plasticizers with the polymer chain. The ionic conductivity was measured and exhibited a maximum value of 10−4 S/cm. The temperature dependence of the electrical conductivity follows the Arrhenius law. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

4.
An attempt has been made to prepare a new proton conducting polymer electrolyte based on polyvinyl alcohol (PVA) doped with NH4NO3 by solution casting technique. The complex formation between polymer and dissociated salt has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared polymer electrolyte has been found by ac impedance spectroscopic analysis. The highest ionic conductivity has been found to be 7.5 × 10−3 Scm−1 at ambient temperature for 20 mol% NH4NO3-doped PVA with low activation energy (~0.19 eV). The temperature-dependent conductivity of the polymer electrolyte follows an Arrhenius relationship, which shows hopping of ions in the polymer matrix.  相似文献   

5.
Manoj Kumar  S. S. Sekhon 《Ionics》2002,8(3-4):223-233
The effect of different plasticizers on the properties of PEO-NH4F polymer electrolytes has been studied. Aprotic organic solvents like propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (γ-BL), dimethylacetamide (DMA), dimethylformamide (DMF), diethylcarbonate (DEC) and dimethylcarbonate (DMC) having different values of donor number, dielectric constant, viscosity etc. have been used as plasticizers in the present study. The addition of plasticizer has been found to modify the conductivity of polymer electrolytes by increasing the amorphous content as well as by dissociating the ion aggregates present in polymer electrolytes at higher salt concentrations. The conductivity enhancement with different plasticizers has been found to be closely related to the donor number of the plasticizer used rather than its dielectric constant. The increase in conductivity with the addition of plasticizer has further been found to be dependent upon the level of ion association present in the electrolytes. The variation of conductivity as a function of plasticizer concentration and temperature has also been studied and maximum conductivity of ∼ 10−3 S /cm at room temperature has been obtained. X-ray diffraction studies show an increase of amorphous content in polymer electrolytes with the addition of plasticizers.  相似文献   

6.
Hybrid solid polymer electrolyte films comprising of poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), LiClO4, and propylene carbonate are prepared by solution casting technique by varying the salt concentration. In this study, PVAc/PMMA polymer blend ratio is fixed as 25:75 on the basis of conductivity and mechanical stability of the film. X-ray diffraction, Fourier transform infrared impedance, thermogravimetry/differential thermal analysis and scanning electron microscopy studies are carried out for the polymer electrolytes. The maximum ionic conductivity is found to be 4.511 × 10−4 S cm−1 at 303 K for the plasticized polymer electrolyte with 8 wt.% of LiClO4. The ionic conductivity is found to decrease with an increase of LiClO4 concentration.  相似文献   

7.
The ZnO filler has been introduced into a solid polymeric electrolyte of polyvinyl chloride (PVC)–ZnO–LiClO4, replacing costly organic filler for conductivity improvement. Ionic conductivity of PVC–ZnO–LiClO4 as a function of ZnO concentration and temperature has been studied. The electrolyte samples were prepared by solution casting technique. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with ZnO concentration and temperature. The temperature dependence on the conductivity of electrolyte was modelled by Arrhenius and Vogel–Tammann–Fulcher equations, respectively. The temperature dependence on the conductivity does not fit in both models. The highest room temperature conductivity of the electrolyte of 3.7 × 10−7 Scm−1 was obtained at 20% by weight of ZnO and that without ZnO filler was found to be 8.8 × 10−10 Scm−1. The conductivity has been improved by 420 times when the ZnO filler was introduced into the PVC–LiClO4 electrolyte system. It was also found that the glass transition temperature of the electrolyte PVC–ZnO–LiClO4 is about the same as PVC–LiClO4. The increase in conductivity of the electrolyte with the ZnO filler was explained in terms of its surface morphology.  相似文献   

8.
In the present work, a novel blend polymer electrolyte membrane using poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and lithium per chlorate (LiClO4) in different compositions has been prepared by the solution-casting technique. Their chemical, structural characters, thermal behavior, surface morphology, and ionic conductivity were studied using Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric/differential thermal analyzer, scanning electron microscopy, and AC impedance analyzer, respectively. A maximum ionic conductivity value of 1.67 × 10−4 S/cm at 303 K is obtained for PVAc–PMMA–LiClO4 complexes in the ratio of 25 × 75, keeping LiClO4 constant as 10 wt.% among all the compositions studied.  相似文献   

9.
Thin films of ionic conductors have low internal resistance. Hence, it could be used as an electrolyte material in sensors to operate at ambient temperatures. Cerium fluoride, a unipolar fluoride ion conductor, has got a different application in electrochemical sensor. In the present work, cerium fluoride thin films have been prepared by physical vapor deposition method and their electrical properties are studied. X-ray diffraction studies reveal the polycrystalline nature of the prepared thin films and the structure of the material. Scanning electron microscopy (SEM) images show grain-like structures. Conductivity analysis of the thin films has been studied by ac impedance analysis and the maximum conductivity value is found to be 1.04 × 10−6 S cm−1. The impedance spectra emphasize intergranular conduction in the prepared thin films.  相似文献   

10.
The effect of plasticizer and TiO2 nanoparticles on the conductivity, chemical interaction and surface morphology of polymer electrolyte of MG49–EC–LiClO4–TiO2 has been investigated. The electrolyte films were successfully prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by sol-gel process and was added into the MG49–EC–LiClO4 electrolyte system. Alternating current electrochemical impedance spectroscopy was employed to investigate the ionic conductivity of the electrolyte films at 25 °C, and the analysis showed that the addition of TiO2 filler and ethylene carbonate (EC) plasticizer has increased the ionic conductivity of the electrolyte up to its optimum level. The highest conductivity of 1.1 × 10−3 Scm−1 was obtained at 30 wt.% of EC. Fourier transform infrared spectroscopy measurement was employed to study the interactions between lithium ions and oxygen atoms that occurred at carbonyl (C=O) and ether (C-O-C) groups. The scanning electron microscopy micrograph shows that the electrolyte with 30 wt.% EC posses the smoothest surface for which the highest conductivity was obtained.  相似文献   

11.
P. K. Shukla  S. L. Agrawal 《Ionics》2000,6(3-4):312-320
The present paper deals with ion transport studies on a new proton conducting composite polymer electrolyte — (PVAx:NH4SCN)y:PVAc system. Complexation and morphology of the composite electrolyte films are discussed on the basis of X-ray diffraction and differential scanning calorimetry data. Coulometry and transient ionic current measurements revealed charge transport through protons. The maximum ion conductivity was found to be 7.4·10−4 S·cm−1 for the composition: x=0.15, y=0.12. The observed conductivity behaviour is correlated to the morphology of the films. The temperature dependence of the electrical conductivity exhibits Arrhenius characteristics in two different temperature ranges separated by a plateau region related to morphological changes occurring in the electrolyte.  相似文献   

12.
Ion-conducting thin film polymer electrolytes based on poly(ethylene oxide) (PEO) complexes with NaAlOSiO molecular sieves powders has been prepared by solution casting technique. X-ray diffraction, scanning electron microscopy, differential scanning calorimeter, and alternating current impedance techniques are employed to investigate the effect of NaAlOSiO molecular sieves on the crystallization mechanism of PEO in composite polymer electrolyte. The experimental results show that NaAlOSiO powders have great influence on the growth stage of PEO spherulites. PEO crystallization decrease and the amorphous region that the lithium-ion transport is expanded by adding appropriate NaAlOSiO, which leads to drastic enhancement in the ionic conductivity of the (PEO)16LiClO4 electrolyte. The ionic conductivity of (PEO)16LiClO4-12 wt.% NaAlOSiO achieves (2.370 ± 0.082) × 10−4 S · cm−1 at room temperature (18 °C). Without NaAlOSiO, the ionic conductivity has only (8.382 ± 0.927) × 10−6 S · cm−1, enhancing 2 orders of magnitude. Compared with inorganic oxide as filler, the addition of NaAlOSiO molecular sieves powders can disperse homogeneously in the electrolyte matrix without forming any crystal phase and the growth stage of PEO spherulites can be hindered more effectively.  相似文献   

13.
The ionic conductivity of PVC–ENR–LiClO4 (PVC, polyvinyl chloride; ENR, epoxidized natural rubber) as a function of LiClO4 concentration, ENR concentration, temperature, and radiation dose of electron beam cross-linking has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivities were measured using the impedance spectroscopy technique. It was observed that the relationship between the concentration of salt, as well as temperature, and conductivity were linear. The electrolyte conductivity increases with ENR concentration. This relationship was discussed using the number of charge carrier theory. The conductivity–temperature behaviour of the electrolyte is Arrhenian. The conductivity also varies with the radiation dose of the electron beam cross-linking. The highest room temperature conductivity of the electrolyte of 8.5 × 10−7 S/cm was obtained at 30% by weight of LiClO4. The activation energy, E a and pre-exponential factor, σ o, are 1.4 × 10−2 eV and 1.5 × 10−11 S/cm, respectively.  相似文献   

14.
The plasticized polymer electrolyte composed of polyvinylchloride (PVC) and polyvinylidene fluoride (PVdF) as host polymer, the mixture of ethylene carbonate and propylene carbonate as plasticizer, and LiCF3SO3 as a salt was studied. The effect of the PVC-to-PVdF blend ratio with the fixed plasticizer and salt content on the ionic conduction was investigated. The electrolyte films reveal a phase-separated morphology due to immiscibility of the PVC with plasticizer. Among the three blend ratios studied, 3:7 PVC–PVdF blend ratio has shown enhanced ionic conductivity of 1.47 × 10−5 S cm−1 at ambient temperature, i.e., the ionic conductivity decreased with increasing PVC-to-PVdF ratio and increased with increasing temperature. A temperature dependency on ionic conductivity obeys the Arrhenius behavior. The melting endotherms corresponding to vinylidene (VdF) crystalline phases are observed in thermal analysis. Thermal study reveals the different levels of uptake of plasticizer by VdF crystallites. The decrease in amorphousity with increase in PVC in X-ray diffraction studies and larger pore size appearance for higher content of PVC in scanning electron microscopy images support the ionic conductivity variations with increase in blend ratios.  相似文献   

15.
The electrical conductivity of the SrTi1−xFexO3−δ, BaTi1−xFexO3−δ and SrTi1−xMnxO3−δ systems has been studied in a range of oxygen partial pressures between 10−16 and 0.21 atm at 900 and 1000 °C. The materials exhibit predominantly ionic conductivity in a wide range of intermediate oxygen partial pressures. It has been found that in Fe doped strontium and barium titanates, the dependencies of the ionic conductivity on the acceptor concentration show a local maximum near x=0.2. Taking into account that in the CaTi1−xFexO3−δ system (x=0−0.5), the concentration dependence of the ionic conductivity also has a maximum near x=0.2, it can be concluded that this is a common phenomenon for Fe doped alkali earth titanates. An assumption has been made that a scheme of defect formation devised earlier for Fe doped calcium titanate is applicable for other alkali earth titanates.  相似文献   

16.
Alkaline solid polymer electrolyte films have been prepared by the solvent-casting method. Gamma radiation treatment and propylene carbonate plastisizer were used to improve the ionic conductivity of the electrolytes at ambient temperature. The structure of the irradiated electrolytes changes from semi-crystalline to amorphous, indicating that the crosslinking of the polymer has been achieved at a dose of 200 kGy. The ionic conductivity at room temperature of PVA/KOH blend increases from 10−7 to 10−3 Scm−1 after the PVA crosslinking and when the plasticizer concentration was increased from 20 to 30%. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

17.
A novel molten salt electrolyte composed of lithium triflate (CF3SO3Li, LiTf), sodium triflate (CF3SO3Na, NaTf), and potassium triflate (CF3SO3K, KTf) has been prepared and characterized by thermogravimetry/differential thermal analysis (TG/DTA), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry. TG/DTA shows that the electrolyte was thermally stable when the temperature was under 400 °C. Its thermal stability gradually decreased with increase of LiTf concentration. The ionic conductivity of molten salt electrolyte has been evaluated by EIS and its value exceeds 10−2 Scm−1 in the temperature range from 230 to 270 °C. The electrochemical window of the electrolyte at the molar ratio of 0.5/1/1 is about 4.7 V at 250 °C. This electrolyte with low melting point exhibits promising characteristics for high-temperature lithium batteries.  相似文献   

18.
The blend-based polymer electrolyte consisting of poly (vinyl chloride) (PVC) and poly (ethylene glycol) (PEG) as host polymers and lithium perchlorate (LiClO4) as the complexing salt was studied. An attempt was made to investigate the effect of TiO2 concentration in the unplasticized PVC–PEG polymer electrolyte system. The XRD and FTIR studies confirm the formation of a polymer–salt complex. The conductivity results indicate that the incorporation of ceramic filler up to a certain concentration (15 wt.%) increases the ionic conductivity and upon further addition the conductivity decreases. The maximum ionic conductivity 0.012 × 10−4 S cm−1 is obtained for PVC–PEG–LiClO4–TiO2 (75–25–5–15) system. Thermal stability of the polymer electrolyte is ascertained from TG/DTA studies.  相似文献   

19.
Development and characterisation of polyethylene oxide (PEO)-based nanocomposite polymer electrolytes comprising of (PEO-SiO2): NH4SCN is reported. For synthesis of the said electrolyte, polyethylene oxide has been taken as polymer host and NH4SCN as an ionic charge supplier. Sol–gel-derived silica powder of nano dimension has been used as ceramic filler for development of nanocomposite electrolytes. The maximum conductivity of electrolyte ∼2.0 × 10−6 S/cm is observed for samples containing 30 wt.% silica. The temperature dependence of conductivity seems to follow an Arrhenius-type, thermally activated process over a limited temperature range.  相似文献   

20.
The solid polymer electrolyte films based on polyethylene oxide, NaClO4 with dodecyl amine modified montmorillonite as filler, and polyethylene glycol as plasticizer were prepared by a tape casting method. The effect of plasticization on structural, microstructural, and electrical properties of the materials has been investigated. A systematic change in the structural and microstructural properties of plasticized polymer nanocomposite electrolytes (PPNCEs) on addition of plasticizer was observed in our X-ray diffraction pattern and scanning electron microscopy micrographs. Complex impedance analysis technique was used to calculate the electrical properties of the nanocomposites. Addition of plasticizer has resulted in the lowering of the glass transition temperature, effective dissociation of the salt, and enhancement in the electrical conductivity. The maximum value of conductivity obtained was ∼4.4 × 10−6 S cm−1 (on addition of ∼20% plasticizer), which is an order of magnitude higher than that of pure polymer nanocomposite electrolyte films (2.82 × 10−7 S cm−1). The enhancement in conductivity on plasticization was well correlated with the change in other physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号