首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
The precedence effect (PE) describes the ability to localize a direct, leading sound correctly when its delayed copy (lag) is present, though not separately audible. The relative contribution of binaural cues in the temporal fine structure (TFS) of lead-lag signals was compared to that of interaural level differences (ILDs) and interaural time differences (ITDs) carried in the envelope. In a localization dominance paradigm participants indicated the spatial location of lead-lag stimuli processed with a binaural noise-band vocoder whose noise carriers introduced random TFS. The PE appeared for noise bursts of 10 ms duration, indicating dominance of envelope information. However, for three test words the PE often failed even at short lead-lag delays, producing two images, one toward the lead and one toward the lag. When interaural correlation in the carrier was increased, the images appeared more centered, but often remained split. Although previous studies suggest dominance of TFS cues, no image is lateralized in accord with the ITD in the TFS. An interpretation in the context of auditory scene analysis is proposed: By replacing the TFS with that of noise the auditory system loses the ability to fuse lead and lag into one object, and thus to show the PE.  相似文献   

2.
Listeners have a remarkable ability to localize and identify sound sources in reverberant environments. The term "precedence effect" (PE; also known as the "Haas effect," "law of the first wavefront," and "echo suppression") refers to a group of auditory phenomena that is thought to be related to this ability. Traditionally, three measures have been used to quantify the PE: (1) Fusion: at short delays (1-5 ms for clicks) the lead and lag perceptually fuse into one auditory event; (2) Localization dominance: the perceived location of the leading source dominates that of the lagging source; and (3) Discrimination suppression: at short delays, changes in the location or interaural parameters of the lag are difficult to discriminate compared with changes in characteristics of the lead. Little is known about the relation among these aspects of the PE, since they are rarely studied in the same listeners. In the present study, extensive measurements of these phenomena were made for six normal-hearing listeners using 1-ms noise bursts. The results suggest that, for clicks, fusion lasts 1-5 ms; by 5 ms most listeners hear two sounds on a majority of trials. However, localization dominance and discrimination suppression remain potent for delays of 10 ms or longer. Results are consistent with a simple model in which information from the lead and lag interacts perceptually and in which the strength of this interaction decreases with spatiotemporal separation of the lead and lag. At short delays, lead and lag both contribute to spatial perception, but the lead dominates (to the extent that only one position is ever heard). At the longest delays tested, two distinct sounds are perceived (as measured in a fusion task), but they are not always heard at independent spatial locations (as measured in a localization dominance task). These results suggest that directional cues from the lag are not necessarily salient for all conditions in which the lag is subjectively heard as a separate event.  相似文献   

3.
The precedence effect refers to the fact that humans are able to localize sound in reverberant environments, because the auditory system assigns greater weight to the direct sound (lead) than the later-arriving sound (lag). In this study, absolute sound localization was studied for single source stimuli and for dual source lead-lag stimuli in 4-5 year old children and adults. Lead-lag delays ranged from 5-100 ms. Testing was conducted in free field, with pink noise bursts emitted from loudspeakers positioned on a horizontal arc in the frontal field. Listeners indicated how many sounds were heard and the perceived location of the first- and second-heard sounds. Results suggest that at short delays (up to 10 ms), the lead dominates sound localization strongly at both ages, and localization errors are similar to those with single-source stimuli. At longer delays errors can be large, stemming from over-integration of the lead and lag, interchanging of perceived locations of the first-heard and second-heard sounds due to temporal order confusion, and dominance of the lead over the lag. The errors are greater for children than adults. Results are discussed in the context of maturation of auditory and non-auditory factors.  相似文献   

4.
In humans, directional hearing in reverberant conditions is characterized by a "precedence effect," whereby directional information conveyed by leading sounds dominates perceived location, and listeners are relatively insensitive to directional information conveyed by lagging sounds. Behavioral studies provide evidence of precedence phenomena in a wide range of species. The present study employs a discrimination paradigm, based on habituation and recovery of the pupillary dilation response, to provide quantitative measures of precedence phenomena in the barn owl. As in humans, the owl's ability to discriminate changes in the location of lagging sources is impaired relative to that for single sources. Spatial discrimination of lead sources is also impaired, but to a lesser extent than discrimination of lagging sources. Results of a control experiment indicate that sensitivity to monaural cues cannot account for discrimination of lag source location. Thus, impairment of discrimination ability in the two-source conditions most likely reflects a reduction in sensitivity to binaural directional information. These results demonstrate a similarity of precedence effect phenomena in barn owls and humans, and provide a basis for quantitative comparison with neuronal data from the same species.  相似文献   

5.
This study tests how peripheral auditory processing and spectral dominance impact lateralization of precedence effect (PE) stimuli consisting of a pair of leading and lagging clicks. Predictions from a model whose parameters were set from established physiological results were tested with specific behavioral experiments. To generate predictions, an auditory nerve model drove a binaural, cross correlation computation whose outputs were summed across frequency using weightings derived from past physiological studies. The model predicted that lateralization (1) depends on stimulus center frequency and the inter-stimulus delay (ISD) between leading and lagging clicks for narrowband clicks and (2) changes differently with lead click level for different ISDs. Behaviorally, subjects lateralized narrowband and wideband click pairs whose stimulus parameters were chosen based on modeling results to test how peripheral processing and frequency dominance contribute to lateralization of PE stimuli. Behavioral results (including unique measures with the lead attenuated relative to the lag) suggest that peripheral interactions between leading and lagging clicks on the basilar membrane and strong weighting of cues around 750 Hz influence lateralization of paired clicks with short ISDs. When combined with auditory nerve adaptation, which emphasizes onset information, lateralization of PE click pairs with a short ISD can be well predicted.  相似文献   

6.
Two experiments were conducted to examine the ability of human listeners to localize the "lag" or "echo" source in a precedence effect paradigm. A 5-ms noise burst was presented from a source located between 554-279 cm from the subject. This "lead" source was always located at 0 degrees azimuth. At the same time, one of two sources located at a distance of 610 cm from the subject was also activated with the same 5-ms noise burst. The subject's task was to identify which lag source had been active. Across sessions, the angular distance between the lag sources was varied, so as to allow a determination of the minimum audible angle (MAA) that could be resolved. Tests were run in a room designed to minimize reflections and in a hallway that was acoustically quite complex. No systematic differences in MAA thresholds were observed as a function of the environment employed. MAA thresholds obtained without the signal from the lead speaker were less than 1 degree for four of the five subjects tested. The precedence effect, as measured by the change in the MAA threshold, appears to have only a modest influence on localization performance. Under conditions in which the lead source was concurrently active, the thresholds were generally elevated by only 2 degrees-4 degrees. A reduction of this magnitude in the ability to resolve the position of the lag source does not seem to be sufficient, in itself, to account for the excellent localization performance frequently observed in reflective environments.  相似文献   

7.
Two experiments explored how frequency content impacts sound localization for sounds containing reverberant energy. Virtual sound sources from thirteen lateral angles and four distances were simulated in the frontal horizontal plane using binaural room impulse responses measured in an everyday office. Experiment 1 compared localization judgments for one-octave-wide noise centered at either 750 Hz (low) or 6000 Hz (high). For both band-limited noises, perceived lateral angle varied monotonically with source angle. For frontal sources, perceived locations were similar for low- and high-frequency noise; however, for lateral sources, localization was less accurate for low-frequency noise than for high-frequency noise. With increasing source distance, judgments of both noises became more biased toward the median plane, an effect that was greater for low-frequency noise than for high-frequency noise. In Experiment 2, simultaneous presentation of low- and high-frequency noises yielded performance that was less accurate than that for high-frequency noise, but equal to or better than for low-frequency noise. Results suggest that listeners perceptually weight low-frequency information heavily, even in reverberant conditions where high-frequency stimuli are localized more accurately. These findings show that listeners do not always optimally adjust how localization cues are integrated over frequency in reverberant settings.  相似文献   

8.
To a first-order approximation, binaural localization cues are ambiguous: many source locations give rise to nearly the same interaural differences. For sources more than a meter away, binaural localization cues are approximately equal for any source on a cone centered on the interaural axis (i.e., the well-known "cone of confusion"). The current paper analyzes simple geometric approximations of a head to gain insight into localization performance for nearby sources. If the head is treated as a rigid, perfect sphere, interaural intensity differences (IIDs) can be broken down into two main components. One component depends on the head shadow and is constant along the cone of confusion (and covaries with the interaural time difference, or ITD). The other component depends only on the relative path lengths from the source to the two ears and is roughly constant for a sphere centered on the interaural axis. This second factor is large enough to be perceptible only when sources are within one or two meters of the listener. Results are not dramatically different if one assumes that the ears are separated by 160 deg along the surface of the sphere (rather than diametrically opposite one another). Thus for nearby sources, binaural information should allow listeners to locate sources within a volume around a circle centered on the interaural axis on a "torus of confusion." The volume of the torus of confusion increases as the source approaches the median plane, degenerating to a volume around the median plane in the limit.  相似文献   

9.
Experiments were conducted with a single, bilateral cochlear implant user to examine interaural level and time-delay cues that putatively underlie the design and efficacy of bilateral implant systems. The subject's two implants were of different types but custom equipment allowed presentation of controlled bilateral stimuli, particularly those with specified interaural time difference (ITD) and interaural level difference (ILD) cues. A lateralization task was used to measure the effect of these cues on the perceived location of the sensations elicited. For trains of fixed-amplitude, biphasic current pulses at 100 pps, the subject demonstrated sensitivity to an ITD of 300 micros, providing evidence of access to binaural information. The choice of bilateral electrode pair greatly influenced ITD sensitivity, suggesting that electrode pairings are likely to be an important consideration in the effort to provide binaural advantages. The selection of bilateral electrode pairs showing sensitivity to ITD was partially aided by comparisons of the pitch elicited by individual electrodes in each ear (when stimulated alone with fixed-amplitude current pulses at 813 pps): specifically, interaural electrodes with similar pitches were more likely (but not certain) to show ITD sensitivity. Significant changes in lateral position occurred with specific electrode pairs. With five bilateral electrode pairs of 14 tested, ITDs of 300 and 600 micros moved an auditory image significantly from right to left. With these same pairs, ILD changes of approximately 11% of the dynamic range (in microApp) moved an auditory image from the far left to the far right-significantly farther than the nine pairs not showing significant ITD sensitivity. However, even these nine pairs did show response changes as a function of the interaural (or confounding monaural) level cue. Overall, insofar as the access to bilateral cues demonstrated herein generalizes to other subjects, it provides hope that the normal binaural advantages for speech recognition and sound localization can be made available to bilateral implant users.  相似文献   

10.
Animals live in cluttered auditory environments, where sounds arrive at the two ears through several paths. Reflections make sound localization difficult, and it is thought that the auditory system deals with this issue by isolating the first wavefront and suppressing later signals. However, in many situations, reflections arrive too early to be suppressed, for example, reflections from the ground in small animals. This paper examines the implications of these early reflections on binaural cues to sound localization, using realistic models of reflecting surfaces and a spherical model of diffraction by the head. The fusion of direct and reflected signals at each ear results in interference patterns in binaural cues as a function of frequency. These cues are maximally modified at frequencies related to the delay between direct and reflected signals, and therefore to the spatial location of the sound source. Thus, natural binaural cues differ from anechoic cues. In particular, the range of interaural time differences is substantially larger than in anechoic environments. Reflections may potentially contribute binaural cues to distance and polar angle when the properties of the reflecting surface are known and stable, for example, for reflections on the ground.  相似文献   

11.
To gain information from complex auditory scenes, it is necessary to determine which of the many loudness, pitch, and timbre changes originate from a single source. Grouping sound into sources based on spatial information is complicated by reverberant energy bouncing off multiple surfaces and reaching the ears from directions other than the source's location. The ability to localize sounds despite these echoes has been explored with the precedence effect: Identical sounds presented from two locations with a short stimulus onset asynchrony (e.g., 1-5 ms) are perceived as a single source with a location dominated by the lead sound. Importantly, echo thresholds, the shortest onset asynchrony at which a listener reports hearing the lag sound as a separate source about half of the time, can be manipulated by presenting sound pairs in contexts. Event-related brain potentials elicited by physically identical sounds in contexts that resulted in listeners reporting either one or two sources were compared. Sound pairs perceived as two sources elicited a larger anterior negativity 100-250 ms after onset, previously termed the object-related negativity, and a larger posterior positivity 250-500 ms. These results indicate that the models of room acoustics listeners form based on recent experience with the spatiotemporal properties of sound modulate perceptual as well as later higher-level processing.  相似文献   

12.
The steady-state sound field of a sine tone does not provide useful localization information in a room. Nevertheless, listeners can localize a sine tone in a room if it has an onset transient which allows the precedence effect to operate. In the present study, we made a quantitative assessment of onsets and the precedence effect by systematically varying onset duration from 0 s (impulsive), where the precedence effect is maximal, to 5 s, where there is no precedence effect at all. We also assessed listeners' sensitivity to the steady-state sound field under impulsive conditions by varying the total duration of tone pulses. Our experiments were conducted in a room with a single acoustical reflection having various directions and delays, and in an anechoic room. The results for tones of various frequencies (500 and 2000 Hz) and sound-pressure levels (65 and 40 dBA) indicate the following: Localization in rooms is facilitated by onsets even if the onsets are as long as 100 ms. The facilitation depends upon the peak intensity of the tone, as well as the onset duration, suggesting that onset rate is critical for the precedence effect; our results are most consistent with rate expressed as an increase in sound pressure per unit time. The facilitation also depends upon the reflection delay time for a room; gradual onsets take on much more importance for the precedence effect in rooms with long delays. As onsets begin to lose their effectiveness listeners become increasingly "misdirected" by invalid cues in the steady-state sound field. The pattern of misdirection suggests a perceptual averaging of cues over an interval more than an order of magnitude longer than previous estimates of the summation window for the precedence effect. The pattern of misdirection varies with the frequency of a tone, due to frequency-dependent interference effects in a room, but it is independent of signal level. Localization of an impulsive sine tone in rooms is very insensitive to the pulse duration; this suggests that binaural inhibition models of the precedence effect must be supplemented by an evaluative component that we term the "plausibility hypothesis."  相似文献   

13.
考虑头部转动带来的动态因素对听觉垂直定位的贡献,提出了前方空间环绕声的四扬声器虚拟重放方法。4个扬声器分别布置在水平面左前、右前以及高仰角的左前上、右前上方向,并采用听觉传输信号处理的方法将多通路空间环绕声信号转换为4个扬声器的重放信号。以9.1通路空间环绕声虚拟重放为例,采用头相关传输函数对双耳声压及其包含的定位因素进行分析表明,该方法可以产生正确的双耳时间差及其随头部转动的变化,从而产生合适的侧向定位双耳因素和垂直定位的动态因素。而心理声学实验结果表明,该方法可以重放稳定的前方空间的水平和垂直虚拟源。因此,四扬声器布置结合听觉传输处理足以重放前方空间环绕声的垂直定位信息,实现多通路空间环绕声的向下混合与简化。   相似文献   

14.
The role of perceived spatial separation in the unmasking of speech   总被引:12,自引:0,他引:12  
Spatial separation of speech and noise in an anechoic space creates a release from masking that often improves speech intelligibility. However, the masking release is severely reduced in reverberant spaces. This study investigated whether the distinct and separate localization of speech and interference provides any perceptual advantage that, due to the precedence effect, is not degraded by reflections. Listeners' identification of nonsense sentences spoken by a female talker was measured in the presence of either speech-spectrum noise or other sentences spoken by a second female talker. Target and interference stimuli were presented in an anechoic chamber from loudspeakers directly in front and 60 degrees to the right in single-source and precedence-effect (lead-lag) conditions. For speech-spectrum noise, the spatial separation advantage for speech recognition (8 dB) was predictable from articulation index computations based on measured release from masking for narrow-band stimuli. The spatial separation advantage was only 1 dB in the lead-lag condition, despite the fact that a large perceptual separation was produced by the precedence effect. For the female talker interference, a much larger advantage occurred, apparently because informational masking was reduced by differences in perceived locations of target and interference.  相似文献   

15.
Recent implementations of binaural synthesis have combined high-frequency pinna diffraction data with low-frequency acoustic models of the head and torso. This combination ensures that the salient cues required for directional localization in the horizontal plane are consistent with psychophysical expectations, regardless of the accuracy or match of the high-frequency cues, or the fidelity of experimental low-frequency information. This paper investigates the effect of a nonrigid boundary condition on the surface pressure and the resulting interaural cues used for horizontal localization. These are derived from an analytical single sphere diffraction model assuming a locally reacting and uniformly distributed impedance boundary condition. Decreasing the magnitude of a purely resistive surface impedance results in an overall decrease in the sphere surface pressure level, particularly in the posterior region. This produces nontrivial increases in both the interaural level and time difference, especially for sound source directions near the interaural axis. When the surface impedance contains a reactive component the interaural cues exhibit further changes. The basic impedance characteristics of human hair and their incorporation into the sphere diffraction model are also discussed.  相似文献   

16.
For human listeners, cues for vertical-plane localization are provided by direction-dependent pinna filtering. This study quantified listeners' weighting of the spectral cues from each ear as a function of stimulus lateral angle, interaural time difference (ITD), and interaural level difference (ILD). Subjects indicated the apparent position of headphone-presented noise bursts synthesized in virtual auditory space. The synthesis filters for the two ears either corresponded to the same location or to two different locations separated vertically by 20 deg. Weighting of each ear's spectral information was determined by a multiple regression between the elevations to which each ear's spectrum corresponded and the vertical component of listeners' responses. The apparent horizontal source location was controlled either by choosing synthesis filters corresponding to locations on or 30 deg left or right of the median plane or by attenuating or delaying the signal at one ear. For broadband stimuli, spectral weighting and apparent lateral angle were determined primarily by ITD. Only for high-pass stimuli were weighting and lateral angle determined primarily by ILD. The results suggest that the weighting of monaural spectral cues and the perceived lateral angle of a sound source depend similarly on ITD, ILD, and stimulus spectral range.  相似文献   

17.
An experiment was designed to determine whether normally sighted human subjects would be able to adapt to the handicapping effects of sudden deprivation of visual cues on horizontal plane sound localization. Two groups of sighted normal-hearing young adults participated. One group was allowed the benefit of sight. The other group was blindfolded. Measurements of accuracy and the time to respond were made daily over the course of five consecutive days, in a semi-reverberant sound proof booth that modeled listening in a small office. Sound localization was assessed using an array of eight speakers that surrounded the subject in space. Each day, one block of 120 trials was presented for each of three stimuli, two one-third octave noise bands, centred at 0.5 and 4 kHz, and broadband noise, to assess the utilization of interaural temporal difference cues, interaural level difference cues and binaural and spectral cues in combination. Blindfolded subjects were relatively less accurate than sighted subjects. Both groups showed gains with practice, the blindfolded group to a greater degree, largely due to improvements in the use of spectral cues. The blindfolded group took longer to respond than the sighted group, but showed greater decrements in response time with practice.  相似文献   

18.
Contribution of spectral cues to human sound localization   总被引:1,自引:0,他引:1  
The contribution of spectral cues to human sound localization was investigated by removing cues in 1/2-, 1- or 2-octave bands in the frequency range above 4 kHz. Localization responses were given by placing an acoustic pointer at the same apparent position as a virtual target. The pointer was generated by filtering a 100-ms harmonic complex with equalized head-related transfer functions (HRTFs). Listeners controlled the pointer via a hand-held stick that rotated about a fixed point. In the baseline condition, the target, a 200-ms noise burst, was filtered with the same HRTFs as the pointer. In other conditions, the spectral information within a certain frequency band was removed by replacing the directional transfer function within this band with the average transfer of this band. Analysis of the data showed that removing cues in 1/2-octave bands did not affect localization, whereas for the 2-octave band correct localization was virtually impossible. The results obtained for the 1-octave bands indicate that up-down cues are located mainly in the 6-12-kHz band, and front-back cues in the 8-16-kHz band. The interindividual spread in response patterns suggests that different listeners use different localization cues. The response patterns in the median plane can be predicted using a model based on spectral comparison of directional transfer functions for target and response directions.  相似文献   

19.
Eight listeners were required to locate a train of 4.5-kHz high-pass noise bursts emanating from loudspeakers positioned +/- 30, +/- 20, +/- 10, and 0 deg re: interaural axis. The vertical array of loudspeakers was placed at 45, 90, and 135 deg left of midline. The various experimental conditions incorporated binaural and monaural listening with the latter utilizing the ear nearest or ear farthest from the sound source. While performance excelled when listening with only the near ear, the contribution of the far ear was statistically significant when compared to localization performance when both ears were occluded. Based on head related transfer functions for stimuli whose bandwidth was 1.0 kHz, four spectral cues were selected as candidates for influencing location judgments. Two of them associated relative changes in energy across center frequencies (CFs) with vertical source positions. The other two associated an absolute minimum (maximum) energy for specific CFs with a vertical source position. All but one cue when measured for the near ear could account for localization proficiency. On the other hand, when listening with the far ear, maximum energy at a specific CF outperformed the remaining cues in accounting for localization proficiency.  相似文献   

20.
This paper evaluates the influence of three multimicrophone noise reduction algorithms on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing aids were evaluated, namely, the binaural multichannel Wiener filter (MWF) and the binaural multichannel Wiener filter with partial noise estimate (MWF-N), together with a dual-monaural adaptive directional microphone (ADM), which is a widely used noise reduction approach in commercial hearing aids. The influence of the different algorithms on perceived sound source localization and their noise reduction performance was evaluated. It is shown that noise reduction algorithms can have a large influence on localization and that (a) the ADM only preserves localization in the forward direction over azimuths where limited or no noise reduction is obtained; (b) the MWF preserves localization of the target speech component but may distort localization of the noise component. The latter is dependent on signal-to-noise ratio and masking effects; (c) the MWF-N enables correct localization of both the speech and the noise components; (d) the statistical Wiener filter approach introduces a better combination of sound source localization and noise reduction performance than the ADM approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号