首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus irradiation at a low energy (50 keV) and at a dosage of 8×1014 ions/cm2 was carried out on 〈002〉 ZnO films grown by using a pulsed laser deposition technique (Sample A). Subsequent rapid thermal annealing at 650 °C and 750 °C was performed to remove defects resulting from the irradiation (samples B and C, respectively). Atomic force microscopy was used to determine the root mean square roughness, which was 10.07, 8.66, and 9.31 nm for samples A, B, and C, respectively. Low-temperature photoluminescence measurements revealed increased deep-level defect peaks following irradiation; however, the subsequent annealing minimized the defects. Although the dominant donor-bound exciton peak verifies the n-type conductivity of the films, the free–electron–to–acceptor and donor-to-acceptor pair peaks in the irradiated samples confirm an increase in acceptor concentration.  相似文献   

2.
Tin oxide thin films were deposited by a novel technique called as modified-SILAR. The preparative parameters were optimized to obtain good quality thin films. As-deposited films were annealed in O2 atmosphere for 1 h at 500 °C. The annealed films were irradiated using Au8+ ions with energy of 100 MeV at different fluencies of 1 × 1011, 1 × 1012, 5 × 1012 and 1 × 1013 ions/cm2 using tandem pelletron accelerator. The irradiation-induced modifications in tin oxide thin films were studied using XRD, AFM, optical band gap, photoluminescence and IV measurements. XRD studies showed formation of tin oxide with tetragonal structure. AFM revealed uniform deposition of the material with increase in grain size after irradiation. Decrease in band gap from 3.51 eV to 2.82 eV was seen with increases in fluency. A decrease in PL intensity, and an additional peak was observed after irradiation. IV measurements showed a decrease in resistance with fluency.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

4.
(1 ? x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) thin films have been deposited on quartz substrates using pulsed laser deposition (PLD). Crystalline microstructure of the deposited PMN–PT thin films has been investigated with X-ray diffraction (XRD). Optical transmission spectroscopy and Raman spectroscopy are used to characterize optical properties of the deposited PMN–PT thin films. The results show that the PMN–PT thin films of perovskite structure have been formed, and the crystalline and optical properties of the PMN–PT thin films can be improved as increasing the annealing temperature to 750 °C, but further increasing the annealing temperature to 950 °C may lead to a degradation of the crystallinity and the optical properties of the PMN–PT thin films. In addition, a weak second harmonic intensity (SHG) has been observed for the PMN–PT thin film formed at the optimum annealing temperature of 750 °C according to Maker fringe method. All these suggest that the annealing temperature has significant effect on the structural and optical properties of the PMN–PT thin films.  相似文献   

5.
《Current Applied Physics》2010,10(4):1112-1116
Sb2S3 thin films prepared by electrodeposition on indium tin oxide coated glass substrate were irradiated with 150 MeV Ni11+ ions for various fluence in the range of 1011–1013 ions/cm2. The modifications in the structure, surface morphology and optical properties have been studied as a function of ion fluence. X-ray diffraction (XRD) analysis indicates a shift in the (2 4 0) peak position towards lower diffraction angle and a decrease in grain size with increase in ion fluence. Presence of microcracks due to irradiation induced grain splitting effect has been observed from the SEM micrograph at higher ion fluence. The optical absorbance spectrum revealed a shift in the fundamental absorption edge and the band gap energy increased from a value of 1.63 eV for as-deposited films to 1.80 eV for the films irradiated with 1013 ions/cm2.  相似文献   

6.
《Current Applied Physics》2010,10(3):880-885
In the present work the influence of annealing temperature on the structural and optical properties of the In2O3 films deposited by electron beam evaporation technique in the presence of oxygen was studied. The deposited films were annealed from 350 to 550 °C in air. The chemical compositions of In2O3 films were carried out by X-ray photoelectron spectroscopy (XPS). The film structure and surface morphologies were investigated as a function of annealing temperature by X-ray diffraction (XRD) and atomic force microscopy (AFM). The structural studies by XRD reveal that films exhibit preferential orientation along (2 2 2) plane. The refractive index (n), packing density and porosity (%) of films were arrived from transmittance spectral data obtained in the range 250–1000 nm by UV–vis-spectrometer. The optical band gap of In2O3 film was observed and found to be varying from 3.67 to 3.85 eV with the annealing temperature.  相似文献   

7.
《Current Applied Physics》2010,10(2):452-456
The GZO/Ag/GZO sandwich films were deposited on glass substrates by RF magnetron sputtering of Ga-doped ZnO (GZO) and ion-beam sputtering of Ag at room temperature. The effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of these sandwich films was investigated. The microstructures of the films were studied by X-ray diffraction (XRD). X-ray diffraction measurements indicate that the GZO layers in the sandwich films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. For the sandwich film with upper and under GZO thickness of 40 and 30 nm, respectively, it owns the maximum figure of merit of 5.3 × 10−2 Ω−1 with a resistivity of 5.6 × 10−5 Ω cm and an average transmittance of 90.7%. The electrical property of the sandwich films is improved by post annealing in vacuum. Comparing with the as-deposited sandwich film, the film annealed in vacuum has a remarkable 42.8% decrease in resistivity. The sandwich film annealed at the temperature of 350 °C in vacuum shows a sheet resistance of 5 Ω/sq and a transmittance of 92.7%, and the figure of merit achieved is 9.3 × 10−2 Ω−1.  相似文献   

8.
Tungsten oxide (WO3) thin films were prepared by an electron beam deposition technique. Films were deposited onto fluorine-doped tin oxide (FTO)-coated glass substrates maintained at 523 K. The as-deposited films were found to be amorphous and crystallized after annealing at 673 K. The electrochromic and optical properties, structure, and morphology are strongly dependent on the annealing conditions. Cyclic voltammetry (C-V) was carried out in the potential range −1 to +1 V. Before and after colouration, the films were characterized by measuring transmittance and reflectance. The colouration efficiencies at 630 nm are about 39.4 cm2 C−1 and 122.2 cm2 C−1 for amorphous and crystalline films, respectively. An investigation of self-bleaching for the coloured film revealed that the film fades gradually over time.  相似文献   

9.
Thickness and chemical composition of the TiNxOy thin films deposited by reactive magnetron sputtering from Ti target at controllable oxygen flow rate were determined by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The films were deposited on carbon foils and amorphous silica (a-SiO2) substrates at 25 °C and 250 °C. The estimated film thickness is of 75-100 nm. The O/Ti atomic ratio in the films increases up to 1.5 with increasing oxygen flow rate, while that of N/Ti decreases from about 1.1 for TiN to 0.4 at the highest oxygen flow rate. Substantial out-diffusion of carbon from the substrate is observed which is independent of the substrate temperature. Films grown onto a-SiO2 substrates can be treated as homogeneous single layers without interdiffusion. It is more difficult to determine the nitrogen and oxygen content due to superposition of RBS signals arising from film and substrate. RBS analysis of the depth profile indicates that for the investigated films the carbon diffusion and oxidation not only at the topmost surface layers but over the bulk of the films were found. Comparison with XPS results indicates substantial oxygen adsorption at the surface of TiNx thin films obtained at zero oxygen flow rate.  相似文献   

10.
Nd-doped Si-rich silicon oxide thin films were produced by radio frequency magnetron co-sputtering of three confocal cathodes: Si, SiO2, and Nd2O3, in pure argon plasma at 500 °C. The microstructure and optical properties of the films were investigated versus silicon excess and post-deposition annealing treatment by means of ellipsometry and Fourier transform infrared spectrometry as well as by the photoluminescence method. A notable emission from Nd3+ ions was obtained for the as-deposited sample, while the films annealed at 900 °C showed the highest peak intensity. The maximum emission was observed for the films with 4.7 at% of Si excess.  相似文献   

11.
In2O3 films have been deposited using chemical spray pyrolysis technique at different substrate temperatures that varied in the range, 250–450 °C. The structural and morphological properties of the as-deposited films were studied using X-ray diffractometer and scanning electron microscope as well as atomic force microscope, respectively. The films formed at a temperature of 400 °C showed body-centered cubic structure with a strong (2 2 2) orientation. The structural parameters such as the crystallite size, lattice strain and texture coefficient of the films were also calculated. The films deposited at a temperature of 400 °C showed an optical transmittance of >85% in the visible region. The change of resistivity, mobility, carrier concentration and activation energies with the deposition temperature was studied. The highest figure of merit for the layers grown at 400 °C was 1.09 × 10−3 Ω−1.  相似文献   

12.
《Current Applied Physics》2010,10(3):813-816
Ag films were deposited on Al-doped ZnO (AZO) films and coated with AZO to fabricate AZO/Ag/AZO multilayer films by DC magnetron sputtering on glass substrates without heating of glass substrates. The best multilayer films have low sheet resistance of 19.8 Ω/Sq and average transmittance values of 61% in visible region. It was found that the highest figure of merit (FTC) is 6.9 × 10−4 Ω−1. For the dye-sensitized solar cell (DSSC) application, the multilayer films were used as transparent conductive electrode (multilayer films/ZnO + Eosin-Y/LiI + I2/Pt/FTO). The best DSSC based on the multilayer films showed that open circuit voltage (Voc) of 0.47 V, short circuit current density (Jsc) of 2.24 mA/cm2, fill factor (FF) of 0.58 and incident photon-to-current conversion efficiency (η) of 0.61%. It was shown that the AZO/Ag/AZO multilayer films have potential for application in DSSC.  相似文献   

13.
Sr(Zr0.84Y0.16)0.91O3 ? δ (SZY) and Ba(Zr0.84Y0.16)0.96O3 ? δ (BZY) protonic conductor coatings were co-sputter deposited from metallic targets in argon–oxygen reactive gas mixtures. The chemical and structural features were investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and their morphology was assessed by scanning electron microscopy of the surface and of brittle fracture cross sections. The electrical properties of the coating were determined by complex impedance spectroscopy as a function of temperature in air. Relationships are established between the electrical properties and the morphology of the coatings. The SZY as deposited coatings is amorphous and crystallises under the convenient perovskite structure after annealing treatment at 873 K under air. The BZY as deposited coatings is crystallised at 523 K in situ under perovskite structure and a further annealing treatment increases the grain size. Conductivities and activation energies of crystallised coatings were 3.1 · 10? 5 S cm? 1/2 · 10? 5 S cm? 1 and 0.65 eV/0.71 eV after stabilization at 773 K for strontium and barium zirconate, respectively.  相似文献   

14.
Magnetism been studied in two series of nanocrystalline SiC films obtained by the method of direct deposition of ions with an energy of ~100 eV at temperatures 1150 °С and 1200 °С. There were separated the contributions of diamagnetism, paramagnetism and superparamagnetism+ferromagnetism. Magnetization value of the films correlates with the deposition temperature. In the films deposited at higher temperatures the value of magnetization was by 1.5 times lower. It was concluded that induced magnetism in nanocrystalline SiC films is caused by interaction of magnetic moments of neutral VSiVC divacancies in separate nanocrystals. The estimated concentration of neutral VSiVC divacancies in nanocrystalline SiC films is ~1020 сm−3.  相似文献   

15.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

16.
Granular HCP-(CoCrPt)100−x(SiO2)x thin films with Cr underlayers have been fabricated by sputtering multilayers followed by post-deposition annealing. Magnetic and structural properties of the films for potential applications in magnetic recording media have been investigated in detail. In as-deposited films coercivities exceeding 2.5 kOe have been obtained with SiO2 varying from 8 to 16 vol%; high coercivity of 5.6 kOe and anisotropy of 4.6×106 erg/cm3 have been achieved at low Mrt value (about 0.4 memu/cm2) in the post-annealed films. VSM measurements showed that the magnetic moment lies well in the film plane under proper preparation conditions. Grain isolation in the magnetic layer was improved by segregating SiO2 into grain boundaries and further enhanced by post-deposition annealing. The rapid increase of the coercivity upon annealing is most likely due to the significant decrease in intergranular exchange coupling, as shown by the δM measurement in which the peak value of δM curves changed from a positive value to a negative value upon annealing. Magnetic reversal properties of the films have also been systematically studied. These results show that the HCP-CoCrPt–SiO2 granular film is a promising candidate for ultra-high-density recording media up to 100 Gbit/in2 or beyond because of its low Pt content and desirable properties.  相似文献   

17.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

18.
The impact of annealing at 300 °C on the elemental composition and the atomic structure of the Co/V interface in the 2.5 Å Co/70 Å V/MgO (100) system has been investigated by medium energy ion scattering (MEIS) using 100 keV He+ ions. By combining the experimental MEIS results with simulations we show that, while the Co/V interface is abrupt for the system kept at room temperature, annealing at 300 °C induces a strong interdiffusion leading to a Co0.5V0.5 surface bcc alloy with a high degree of disorder. Additionally, the MEIS data suggest that the surface of the annealed system is slightly rumpled by ~ 0.2 Å.  相似文献   

19.
Nanostructured Zn1−xMnxS films (0  x  0.25) were deposited on glass substrates by simple resistive thermal evaporation technique. All the films were deposited at 300 K in a vacuum of 2 × 10−6 m bar. All the films temperature dependence of resistivity revealed semiconducting behaviour of the samples. Hot probe test revealed that all the samples exhibited n-type conductivity. The nanohardness of the films ranges from 4.7 to 9.9 GPa, Young’s modulus value ranging 69.7–94.2 GPa.  相似文献   

20.
Er-doped Si-SiO2 and Al–Si-SiO2 films have been deposited by rf-sputtering being annealed afterwards. Annealing behavior of the Er3+: 4I13/24I15/2 emission of Er-doped Si-SiO2 yields a maximum intensity for annealing at 700–800 °C. 4I13/24I15/2 peak emission for Er-doped Al–Si-SiO2 at 1525 nm is shifted from that for Er-doped Si-SiO2 at 1530 nm and the bandwidth increases from 29 to 42 nm. 4I13/24I15/2 emission decays present a fast decaying component related to Er ions coupled to Si nanoparticles, defects, or other ions, and a slow decaying component related to isolated Er ions. Excitation wavelength dependence and excitation power dependence for the 4I13/24I15/2 emission correspond with energy transfer from Si nanoparticles. Populating of the 4I11/2 level in Er-doped Si-SiO2 involves branching and energy transfer upconversion involving two or more Er ions. Addition of Al reduces the populating of this level to an energy transfer upconversion involving two ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号