首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
光谱学是利用光与物质的相互作用,展示物质微观结构,提供不同化学分析方式,从而实现对物质的定量和定性分析。壁画制作工艺分析中运用了大量的光谱分析技术,该研究以北京延庆花盆关帝庙为例,通过光谱及其他技术分析壁画的制作材料和工艺。花盆关帝庙位于北京延庆区花盆村,始建于清雍正四年(1726年),是当时祭祀的重要场所,也是延庆地区关帝庙的典型代表之一。运用X射线衍射、拉曼光谱和激光粒度分析仪等一系列光谱技术发现关帝庙壁画的地仗层成分为石英、方解石和钠长石,白粉层成分为石膏,颜料层中红色颜料为铁红、铅丹和朱砂,蓝色颜色为蓝铜矿,黄色颜色为铬黄,黑色颜色为炭黑,白色颜料为石膏,绿色颜色为巴黎绿、绿土和铬绿。沥粉贴金工艺的胶结物为熟桐油和松香树脂,金箔采用含金量86.1%的赤金。拉曼光谱不仅可以辨析壁画颜料,还能通过颜料历史研究佐证和丰富壁画修复历史信息。结合文物光谱分析数据与文献资料,充分挖掘文物背后的信息,对研究和保护古代壁画有着重要意义。通过花盆关帝庙壁画同面墙不同位置的壁画地仗层制作工艺的差异,说明壁画制作材料和工艺受位置影响。期待日后研究者通过研究壁画制作材料和工艺差异,发现符合规制的典型壁...  相似文献   

2.
壁画是寺院建筑的重要装饰元素,也是藏传佛教艺术的重要组成部分。扎什伦布寺始建于明正统12年(公元1447年),作为后藏最大的寺院,寺内保存了大量精美壁画,这些壁画对研究藏传佛教及佛教艺术具有重要意义。扎什伦布寺自建寺起一直为传播佛教文化服务,经历了频繁的大规模修建。为了解扎什伦布寺壁画的制作材料与工艺,为今后壁画的保护及修复提供重要的参考及科学支撑,选取寺内强巴佛殿四层北壁、吉康扎仓南殿西侧的典型壁画,共采集8个样品。采用超景深三维视频显微镜观察壁画的制作结构,显微激光拉曼光谱仪对有机与无机颜料的成分信息进行表征,偏光显微镜根据晶体的光学信息鉴别拉曼光谱相似的颜料颗粒,X射线衍射仪用于测定地仗成分,扫描电镜/能谱仪则对微观数据进行确认和补充。通过分析研究,壁画由地仗层、准备层、颜料层构成。颜料包括矿物及人工合成颜料,其中红色颜料为朱砂与颜料红14,绿色颜料为块铜矾、酞菁绿,黑色颜料为碳黑,黄色颜料为雌黄,蓝色颜料为合成群青。颜料红14与酞菁绿为有机合成颜料,合成群青则为无机合成颜料。块铜矾作为矿物颜料,在欧洲曾用于架上画、壁画、手稿等艺术作品中,但在国内还未曾发现其使用历史,这一发现扩展了对绿色颜料的认识。壁画的地仗层依据藏式壁画制作传统使用了阿嘎土,准备层则由黄土制备。研究结果表明,壁画制作时以阿嘎土打底,刷一层黄土找平壁面,以胶调和颜料绘制于黄土层之上。壁画除了使用一些常见的传统藏式壁画材料,还发现了一些近代人工合成材料,说明扎什伦布寺强巴佛殿四层北壁及吉康扎仓南殿西侧壁画曾经历过重绘或补绘。该研究结果不仅弥补了扎什伦布寺壁画的研究空缺,也为扎什伦布寺修缮历史的补充及完善提供了重要证据。  相似文献   

3.
用金属指示剂铬黑 T(EBT)为共振光散射探针 ,对敦煌壁画含不同颜料的胶结材料中的蛋白质含量进行了定量测定。在 p H=4 .10的 Britton- Robinson缓冲溶液条件下 ,在波长 λ=375 nm处 ,以牛血清白蛋白 (BSA)为标准样品绘制校准曲线 ,测定含不同颜料的胶结材料中蛋白质结果分别为 :黄色颜料8.715 1μg/ mg;红色颜料 6 .30 71μg/ mg;黑色颜料 6 .16 5 5 μg/ mg;绿色颜料 2 .2 2 6 5 μg/ mg和白色颜料1.10 6 6 μg/ mg。对 BSA的检出限为 5 5 μg/ L,线性范围 0— 13mg/ L。该方法简单、快速、灵敏度高 ,平行测定的相对标准偏差 (RSD)为 2 .7% ,蛋白质的加标回收率为 96 .7%— 10 6 .6 %。据此建立了一种测定壁画颜料胶结材料中蛋白质含量的新方法  相似文献   

4.
针对取样分析技术破坏壁画文物完整性问题,提出非接触式可见光谱法原位无损识别壁画文物矿物质颜料物质成分和粒径的方法。构建非接触式获取平台原位无损采集壁画文物表面可见光谱;通过调研和实测数据分析,制备了壁画矿物质颜料可见光谱数据库。分析数据库中的光谱数据发现:同种化学成分的颜料具有相同的吸收特性,表现为光谱曲线峰值位置和几何轮廓的相似性;在不同粒径下又呈现出不同的散射特性,表现为光谱曲线幅度的差异性。为此,构建了壁画文物矿物质颜料物质成分和粒径的可见光谱法无损识别流程和识别方法,即提取光谱曲线几何轮廓特征构建表征空间实现了颜料物质成分的识别;在此基础上,提出了矿物质颜料需进行物理特征识别的理念,并建立了光谱曲线幅度积分值与颜料平均粒径间的拟合关系,实现颜料粒径识别。以敦煌莫高窟壁画为例验证了该方法的可行性。  相似文献   

5.
矿物颜料是古代壁画显色的物质基础,其可见光谱反映自身物质和物理属性。不同颜料对可见光吸收特性的差异导致光谱曲线形状不同,同一种颜料因粒径等级差异引起光谱曲线幅值的规律性变化。依据矿物颜料上述特性,提出一种基于可见光谱的古代壁画颜料无损鉴别方法,通过光谱归一化方法实现不同粒径等级的同一颜料光谱曲线叠合,去除颜料粒径等级对光谱曲线幅值变化的影响,然后提取表征光谱曲线在各波段增减性和凹凸性的一阶与二阶导数特征,与光谱曲线组合得到颜料物质属性鉴别的光谱组合特征空间,以光谱角和欧式距离为基础构建评价指标,计算待鉴别颜料与数据库参考样本在光谱特征空间中的匹配误差(ME),实现颜料物质属性的鉴别。通过构建矿物颜料平均粒径大小和光谱反射率均值之间关系函数,实现颜料平均粒径大小的鉴别。基于构建的古代壁画常用颜料光谱数据库,以莫高窟壁画为对象,通过非接触式原位无损测量方法测量获得壁画颜料的可见光谱数据,对本文方法进行了验证,并以石绿和青金石颜料的鉴别结果为例,对古代壁画颜料使用技法、不同朝代颜料使用的差异性及原因进行了探讨。该方法将为更加全面深入研究和保护古代壁画提供有效的理论与方法支撑。  相似文献   

6.
文物颜料成分分析鉴定是文物材质分析和文物保护工作的重要内容。利用自行研制的光导纤维反射光谱仪对唐代彩绘陶器和壁画上的颜料成分进行了无损分析鉴定,通过比较彩绘文物颜料和标准颜料的反射光谱曲线的形状以及特征峰或一阶导数峰来完成颜料的鉴定工作。光导纤维反射光谱法鉴定出西安市唐代彩绘文物1#样品墓葬壁画上的深红色颜料是纯度较高的土红;2#样品陶器残片上的绿色颜料为石绿;3#样品陶缸残片上的橙红色和朱红色颜料分别是由大量铅丹和微量土红及大量朱砂和微量土红的混合物所组成。采用X射线荧光分析法进行验证,实验结果表明光导纤维反射光谱技术鉴定彩绘文物颜料成分的结果是准确、可靠的,提供了一种文物颜料无损分析的简捷方法。  相似文献   

7.
利用显微激光拉曼光谱仪对大昭寺转经廊壁画颜料进行了分析。结果表明,壁画使用的红、黄、蓝、绿和白色颜料有朱砂、铅丹、甲苯胺红、雌黄、铅铬黄、铁黄、石青、群青、石绿、水胆矾、巴黎绿、菱镁矿、立德粉和方解石。首次发现壁画中使用了合成有机颜料甲苯胺红。检测分析结果提供了准确可靠的资料,有助于清晰认识不同时期壁画绘制和修复所使用颜料成分。  相似文献   

8.
古壁画、陶彩颜料的拉曼光谱分析   总被引:19,自引:7,他引:12  
左健  许存义 《光散射学报》1999,11(3):215-219
本文利用拉曼光谱对河南班村遗址出土的仰韶彩陶陶彩以及河北磁县湾漳东魏北齐大型壁画墓中的壁画颜料进行了分析,成功的测定出陶彩及壁画颜料的成分。这一研究工作表明,拉曼光谱作为现代技术非常适合于易损和不允许取样的珍贵艺术品颜料的无损分析  相似文献   

9.
《光散射学报》2015,(3):263-270
本文利用显微共焦拉曼光谱仪和傅里叶变换拉曼光谱仪,结合微聚焦X射线荧光光谱仪,对广州发掘出土的清代中期的彩绘瓷片进行了测试,分析了彩绘瓷上红色、蓝色、黄色、绿色、粉红色和黑色颜料以及彩绘上的腐蚀物。研究表明,红色颜料的着色剂为赤铁矿(α-Fe_2O_3),其颜色亮度的变化与其晶体晶格结构的变化有关,黄色颜料并不属于锑黄,而是铅锡黄Ⅱ型,样品5蓝色颜料是钴蓝(CoO·Al_2O_3),黑色颜料是氧化锰(MnO),彩绘的腐蚀物主要为碳酸铅、磷酸铅、炭黑等。其结果,对彩绘瓷器的保存与保护提供了一定的依据。  相似文献   

10.
《光散射学报》2017,(4):338-342
利用显微镜、扫描电镜和激光拉曼光谱技术对库木吐喇石窟壁画铅颜料进行分析,结果显示棕黑色颜料是二氧化铅和铅丹,橘红色和棕红色颜料是铅丹。采用拉曼光谱检测铅颜料,选择恰当的激光波长和检测功率是获取准确分析结果的关键,较长的激光波长和低的功率能确保铅颜料稳定。研究还发现了石窟壁画颜料铅丹的变色现象。  相似文献   

11.
Shrines (or altars) are constructed in China for worshiping ancestors, Bodhisattva, and God of Wealth. In this work, pigments from the shrine of Kaiping Diaolou tower were analyzed by micro‐Raman spectroscopy, in conjunction with other analytical methods including scanning electron microscopy (SEM) with energy dispersive X‐ray spectroscopy (EDX) and X‐ray fluorescence (XRF). Paintings of the shrine were composed of 2–3 pigment layers and the total thickness was determined as about 200–300 µm by optical microscopy and SEM, indicating the fine painting skills applied in the construction of the shrine. The green pigments on the surface layer of the green fragment were identified as a mixture of lead phthalocyanine (PbPc) and cornwallite (Cu5(AsO4)2(OH)4) by XRF and micro‐Raman spectroscopy with two different excitation wavelengths (488 and 785 nm). Underneath the green layer, red and yellow ochre were found. The pigments on the surface layer of red and blue fragments were identified as hematite (Fe2O3) and lazurite or synthetic ultramarine [(Na8(Al6Si6O24)S3)], respectively. Finally, the pigments under the two surface layers were identified by EDX and micro‐Raman spectroscopy as chromium oxide (Cr2O3), gypsum (CaSO4·2H2O) and calcite (CaCO3). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The compositions of plaster, pigments, and binding medium were identified using micro-Raman spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray, and gas chromatograph-mass spectrometer. The results show that the plaster was calcium carbonate; the red color was ascribed to hematite; the blue pigment was ultramarine; the black pigment was carbon; and the yellow pigment was litharge. Animal glue as the binding medium was mixed in the pigments. Dissolved salt (mirabilite) was confirmed on the tomb passage. The mural detachment was detected with portable infrared thermal imager, and this damage resulted from the soil layer. This will serve as the basis for repairing the murals and reliable methods for identifying ancient murals.  相似文献   

13.
The image of Our Lady of Copacabana is a gilded polychrome sculpture manufactured in maguey wood at the end of the 16th century. It is a highly devotional image in the Andean region and her sanctuary lays at the shores of the Titicaca Lake in Bolivia. In this study, a green sample taken from the Virgin's veil has been analyzed with the aim to identify the green pigment and the gilding technique. The green pigment layer covered completely the shiny color of the gilded area. First, the cross section of the sample was examined by optical microscopy revealing the presence of green crystals on a white layer; beneath it, a gold leaf on a red bole was observed. Scanning electron microscopy‐energy dispersive spectroscopy analysis allowed the identification and quantification of copper and chloride in the green pigment layer. Analysis by micro‐Raman spectroscopy indicated the presence of atacamite (Cu3Cl2(OH)3) as the green pigment. Although this compound has been identified as a degradation product of copper pigments or of metallic objects containing copper, in this polychrome sculpture, atacamite was used as the green pigment and is identified for the first time as a mineral pigment in a colonial sculpture made in the Viceroyalty of Peru. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Laser‐induced breakdown spectroscopy (LIBS) and Raman microscopy were used for the identification of pigments in wall painting. Raman spectroscopy, which provides the molecular ‘fingerprint’ of the compound, is nowadays widely used by the archaeometry community, especially for pigment analysis. LIBS, which provides the elementary composition of samples, is a rapid noncontact method, enabling layer‐by‐layer analysis through a precise laser ablation of the sample. This work deals with the behavior of pigments after a LIBS analysis, by trying to identify the compounds before and after the laser shot. Six commercial pigments prepared with the fresco technique were investigated: ultramarine blue, red lead, charcoal, a yellow and a red ochre, and a green earth. Raman spectra, acquired on the sample surface and in the crater induced by LIBS analysis, were compared. The results show that these pigments are well recognized after a LIBS measurement. The analysis of green earth illustrates that the combination of these two techniques gives complete information from a sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
栀子黄色素包合物的研究   总被引:4,自引:0,他引:4  
栀子黄色素是一种用途非常广泛并具有许多生理活性的食用天然色素,但由于性质不稳定,使其应用受到一定的限制. 制备了栀子黄色素与β-环糊精的包合物,并
通过紫外、红外、荧光、核磁共振谱验证了包合物的形成,确定了组成及包合物形成常数. 研究结果表明:栀子黄色素与β-环糊精形成了1∶1包合物,其结果将为栀子黄色素的应用提供参考依据.  相似文献   

16.
In 1695, the Valencian artist Vicente Guillo was engaged in painting the vault of the Sant Joan del Mercat church in Valencia, Spain. After preliminary work was carried out, his contract was cancelled. In 1697, Antonio Palomino, renowned for the publication of his technical treatise entitled El Museo Pictorio y Escala Optica, was finally selected as the painter in charge of decorating the vaulted ceiling of Sant Joan del Mercat. This paper reports an analytical study focused on the characterisation and discrimination of the palette and painting procedures used by Palomino and Guillo in the frescoes of Sant Joan del Mercat. For this purpose, Raman spectroscopy combined with light microscopy, scanning electron microscopy–X‐ray microanalysis, voltammetry of microparticles, X‐ray diffraction, Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry has been employed. The use of gypsum as stucco material for the ground layers contrasts with the recommendations made by Palomino in his treatise about the convenience of using slaked lime‐sand mortars according to traditional fresco recipes. Although lead‐based pigments were not traditionally recommended for frescoes because of their empirically known alterations when subjected to strong alkaline fresco medium, both Guillo and Palomino used them. Palomino, probably supported by his personal experience as a painter, recommended and used Naples yellow, which has been found in a good state of preservation. In contrast, white lead areas found on Guillo's paintings have transformed into lead oxides. Other pigments found in the vaulted ceiling such as smalt, goethite, haematite, azurite and malachite have also undergone substantial changes because of the extreme temperature conditions to which they were subjected in the church. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study, shards from Roman wall paintings (from the end of the first century to the fourth century A.D.) decorating the domus below the Basilica of SS. John and Paul on the Caelian Hill (Rome), were analyzed in order to identify the pigments used. The analytical techniques employed for the characterization of the pigments were the scanning electron microscope coupled with an energy dispersive spectrometer (SEM-EDS) and infrared spectroscopy (ATR and micro ATR). While SEM-EDS allowed to perform a qualitative analysis of the material, by FT-IR chemical species have been identified. The pigments identified were those mentioned in the literature for the Imperial Roman fresco painting: different types of ochre (yellow and red), mixtures containing lead, green earths and precious pigments such as cinnabar and Egyptian blue. They were often used as mixtures and the use of the most valuable pigments (cinnabar and Egyptian blue) were found in the most ancient rooms.  相似文献   

18.
The Fine Arts Museum in Seville conserves an especially wide group of paintings from the 16th century Spanish art, among which one of the highest importance is a triptych attributed to Marten de Vos. One of the panels was recently restored, which opened a possibility for its material and technical analysis. For this research, only non-destructive techniques have been used: ultraviolet light, infrared reflectography, and X-ray fluorescence. The ultraviolet exam showed wide areas of later interventions, which were confirmed by X-ray fluorescence results. By infrared reflectography it was possible to observe under-drawings and some pentimenti. The X-ray fluorescence results identified inorganic pigments, common for that period of time: lead white, yellow, and red ochres, lead–tin yellow, vermilion, a green copper based pigment, azurite, smalt as De Vos’s basic blue pigment, umber, and an organic black pigment, probably bone black.  相似文献   

19.
Mid-infrared fiber-optic reflectance spectroscopy (Mid-IR FORS), a sensitive, non-invasive technique for determining chemicals present on a surface, has been used to test efficacy of oil-in-water microemulsions and micellar solutions in cleaning of painted surfaces. The target of the application of these innovative nanostructured systems was the selective removal of an undesired polymeric layer from a fresco surface. The experiments were carried out by first coating frosted glass slides and painted mortar simulating a real fresco with four acrylic and vinyl polymer varnishes commonly used in wall painting restoration. Spectra of the samples were then collected by means of microreflectance single-beam infrared spectroscopy and Mid-IR FORS before and after the application of the aqueous dispersed systems based cleaning agents. Sharp, strong peaks due to the stretching of the estereous C=O bond of the polymers in a wavelength range between 1730 and 1750 cm-1 were used as marker for the presence of these organic materials. Through Mid-IR FORS semiquantitative spectroscopy, the efficiency of the treatment has been clearly demonstrated, indicating that the nanotechnology approach represents a new, safe, and very efficient way of removing aged polymers from fresco surfaces. PACS 82.35.Gh; 82.70.Uv; 82.80.Gk; 87.64.Je  相似文献   

20.
Using the method of Raman spectroscopy the pigment composition is investigated of, and the brushwork technique used in, the original layer of a 19th century painting is established. It is an overdoor worked, presumably, by Antoine Jean-Etienne Faivre. It is established that the artist used the following pigments: cinnabar and dyes on the basis of goethite and hematite (for red, yellow–orange, and brown shades), ultramarine and Prussian blue (for blue shades), and Emerald green and a mixture of blue and yellow shades (to obtain a green color). It is determined that white lead was used a primer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号