首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
单脉冲激光诱导击穿光谱技术(single-shot,LIBS)是一种在国际上被广泛使用的物质及元素检测技术,具有快速、准确、无需样品制备等诸多优点.为了满足单脉冲LIBS的实验要求,实验用激光器的选取是非常重要的,它直接关系到诱导激光的强度以及脉冲宽度的大小,而这些又对实验结果产生深刻的影响.因此,选取正确的激光器,是单脉冲LIBS成功的关键.正是基于这个目的,比较了不同波长、不同激光能量的激光脉冲作用下,纯铅发射光谱的定量变化,对于单脉冲LIBS中激光器的选取有着很好的借鉴意义.  相似文献   

2.
The simultaneous operation for the Q- switched Nd: YAG laser at 1.06 and the tunable color-center laser over 1.12~1.26 μm has been realized by using a LiF: F2- color-center crystal both as the Q-switcher for the Nd:YAG laser and as the active medium for the color-center laser. The interaction of the two lasers has been analyzed and calculated with the rate equations. The pulse duration of YAG laser is compressed, in agreement with the experimental results.  相似文献   

3.
The simultaneous operation for the Q- switched Nd: YAG laser at 1.06 and the tunable color-center laser over 1.12~1.26 μm has been realized by using a LiF: F2- color-center crystal both as the Q-switcher for the Nd:YAG laser and as the active medium for the color-center laser. The interaction of the two lasers has been analyzed and calculated with the rate equations. The pulse duration of YAG laser is compressed, in agreement with the experimental results.  相似文献   

4.
The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30–80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.  相似文献   

5.
Passive Q-switching of Pulsed and CW Nd: YAG Lasers with Cr~(4 ): YAG   总被引:1,自引:1,他引:0  
Passive Q-switching of Pulsed and CW Nd:YAG Lasers with Cr ̄(4+):YAGPassiveQ-switchingofPulsedandCWNd:YAGLaserswithCr ̄(4+):YAG...  相似文献   

6.
We show that in the presence of a bandwidth-limiting component intracavity selfphase modulation in high power mode-locked and Q-switched lasers is accompanied by interesting pulse-shaping phenomena. If the phase modulation is properly controlled the pulse duration can approach the limit given by the frequency bandwidth of the laser. For example, for a Nd: YAG laser our calculations predict an intracavity pulse compression by approximately a factor of ten over the typical pulse duration of conventional mode-locking.  相似文献   

7.
Experimental and theoretical studies of the coupled-cavity diode-pumped Nd:YAG/Cr:YAG microchip lasers with intracavity Raman conversion of laser pulses in a Ba(NO3)2 crystal into two Stokes pulses have been made. Two lasers with a different cavity length have been investigated. The minimal pulse durations at the 2nd Stokes wavelength were ??100 ps in the short-cavity laser at pulse energy of 5???J, and the pulse repetition rate reached 20?C24?kHz. The laser and Stokes pulse dynamics, as well as the spatial intensity distribution of the laser and the 1st Stokes beams at the output mirror have been recorded. A model describing such coupled-cavity microchip Raman lasers has been developed. The numerically simulated laser and Stokes pulse dynamics, and the calculated pulse energy, duration, and repetition rate are in good agreement with the experimental data.  相似文献   

8.
Optical properties of Cr,Yb:YAG, Cr,Nd:YAG crystals, and composite Yb:YAG/Cr:YAG ceramics self-Q-switched solid-state laser materials are presented. The merits of these self-Q-switched laser materials are given and the potentials of such lasers can be chosen by the applications. Cr,Yb:YAG and composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser are conducted. Although several tens of kW peak power can be obtained with a monolithic microchip Cr,Yb:YAG laser, the experimental results show that the performance of this laser is limited by the absorption of Cr4+ ions at a pump wavelength of 940 nm and strong fluorescence quenching at high Cr concentration. Composite Yb:YAG/Cr:YAG ceramics are more suitable to realize high pulse energy and peak power (up to MW level) with optimized lasing and Q-switching parts. In addition, the instabilities induced by the multi-longitudinal mode competition in Cr,Nd:YAG and Cr,Yb:YAG microchip lasers are addressed. The different gain bandwidths of Yb:YAG and Nd:YAG play an important role in the instability of the output laser pulse trains. Stable laser pulses from the Cr,Yb:YAG microchip laser were obtained due to the antiphase dynamics. For the Cr,Nd:YAG microchip laser, the instability caused by the multi-longitudinal mode competition is an intrinsic property. Different transverse patterns were observed in Cr,Nd:YAG microchip lasers when a pump beam with larger diameter was used. Saturated inversion population distribution inside the gain medium plays an important role in the transverse pattern formation. Different transverse patterns were reconstructed by combining different sets of the Hermite-Gaussian modes.  相似文献   

9.
Ultrashort pulses were generated in passively mode-locked Nd:YAG and Nd:GdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.  相似文献   

10.
杨鸿儒  龚美霞 《光子学报》1993,22(4):328-331
本文对应用于单次相关仪中的非线性晶体KD*P的相位匹配条件进行了理论分析,得到了晶体的最佳相位匹配设计参数。利用此参数加工的非线性晶体已成功地用于测量超短光脉冲实验中,测得CPM Nd:YAG激光器输出的1.06μm光脉冲宽度为14ps.与条纹相机测量的结果二者符合较好。  相似文献   

11.
The application of lasers for processing diamond has revolutionized the diamond industry and its applications in microelectronics, microelectromechanical system (MEMS) and microoptoelectromechanical system (MOEMS) technologies. The process quality can be evaluated using spectroscopic techniques. In the present investigation, four different types of Q‐switched solid‐state lasers (with different beam parameters), namely, a lamp‐pumped Nd:YAG laser operating at 1064 nm, a lamp‐pumped Nd:YAG laser operating at second harmonically generated 532 nm, a diode‐pumped Nd:YVO4 laser operating at 1064 nm and a diode‐pumped Nd:YAG laser operating at 1064 nm, have been employed for the processing of a single‐crystal, gem‐quality, natural diamond. The main objective behind the selection of these lasers with different beam parameters was to study the effect of wavelength, pulse width, pulse energy, peak power and beam quality factor (M2 factor) on various aspects of processing (such as microcracking, material loss and cut surface quality) and their relative merits and demerits. The overall weight loss of the diamond and formation of microcracks during processing have been studied for the above four cases. The characteristics of the graphite formed during processing, elemental analysis, surface morphology of the cut surface and process dynamics have been studied using micro‐Raman spectroscopy and scanning electron microscopy (SEM). We observed that laser cutting of single‐crystal diamonds used for industrial applications can be accomplished without microcracking or surface distortion using Q‐switched Nd:YAG lasers. This allows direct processing without extensive postgrinding and polishing stages. Very efficient diamond processing is possible using diode‐pumped lasers, which results in the lowest possible breakage rate, good accuracy, good surface finish and low weight loss. From the micro‐Raman and SEM studies, it is concluded that the surface quality obtained is superior when diode‐pumped Nd:YVO4 laser is used, owing to its extremely high peak power. The maximum graphite content is observed while processing with lamp‐pumped Nd:YAG laser at 532 nm. An overall comparison of all the laser sources leads to the conclusion that diode‐pumped Nd:YAG laser is a superior option for the efficient processing of natural diamond crystals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We report on optical parametric oscillators (OPO's) based on periodically poled RbTiOAsO(4) (PP RTA), which are pumped by Q -switched solid-state lasers. With a diode-pumped Nd:YVO(4) laser (pulse energy, 800microJ ; pulse duration, 5.5 ns; repetition rate, 1 kHz) the PP RTA OPO generated 1.58-microm signal and 3.26-microm idler radiation with a signal pulse energy of 45microJ . The large aperture of 3 mmx3 mm of the PP RTA crystal also permitted OPO operation with pump pulse energies as high as 65 mJ, provided by a flash-lamp-pumped Q -switched Nd:YAG laser (pulse duration, 20 ns; repetition rate, 10 Hz). With this pump source the OPO generated signal pulse energies as high as 17 mJ, corresponding to an efficiency of 26%. The performance of this OPO shows that large-aperture PP RTA crystals are well suited for pulsed nanosecond OPO operation with pump pulse energies of tens of millijoules.  相似文献   

13.
The modelocking of a Nd:YAG laser using second-harmonic generation in an external cavity as the only pulse shortening process is reported. The output of a long pulse Nd:YAG laser was simultaneously modelocked and Q-switched. The average pulse duration was 30–50 ps and the peak power was in the range 60–160 kW.  相似文献   

14.
A passively Q-switched and mode-locked Nd:LuVO4 laser with V:YAG at 1.34 μm was successfully demonstrated. Comparisons between c-cut and a-cut Nd:LuVO4 lasers were experimentally made. The maximum average output power of 170 mW, the highest Q-switched pulse energy of 4.5 μJ were obtained in c-cut Nd:LuVO4 laser. The duration of mode-locked pulse was estimated to be less than 540 ps with repetition rate of 110 MHz.  相似文献   

15.
Lasers for materials processing: specifications and trends   总被引:2,自引:0,他引:2  
An overview is given of the types of lasers dominating the field of laser materials processing. The most prominent lasers in this field are the CO2 and the Nd: YAG laser. The domain of CO2 lasers is applications which demand high laser powers (up to 30 kW are available at present), whereas the domain of Nd:YAG lasers is micro-machining applications. In the kilowatt range of laser output power, the two types of lasers are in competition. New diffusion-cooled CO2 laser systems are capable of output laser powers of several kilowatts, with good beam qualities, while still being quite compact. The output power and beam quality of Nd:YAG lasers has been improved in recent years, so that Nd:YAG lasers are now an alternative to CO2 lasers even in the kilowatt range. This is especially true for applications that demand optical fibre transmission of the laser beam, which is possible with Nd:YAG laser light but not with the longerwavelength light emitted by CO2 lasers. The main problem in solid-state lasers such as Nd:YAG is the thermal lensing effect and damage due to thermal stresses. In order to reduce thermal loading, cooling has to be enhanced. Several alternative geometries have been proposed to reduce thermal loading and, by this, thermal lensing effects. There are now slab and tube geometries which allow much higher output powers than the conventionally used laser rods. A very new scheme proposes a thin slab whose cooled side is also used as one of the laser mirrors, so that thermal gradients occur mainly in the direction of the beam propagation and not perpendicular to it, as is the case in the other geometries. As well as CO2 and Nd:YAG lasers, semiconductor laser diodes are very promising for direct use of the emitted light or as pump sources for Nd:YAG and other solid-state lasers. When packaging together thousands of single laser diodes, output powers of several kilowatts can be realized. Major problems are collimation of the highly divergent laser beams and cooling of the laser diode bars.  相似文献   

16.
Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads   总被引:6,自引:0,他引:6  
We discuss power scaling of passively mode-locked lasers using multiple laser heads in the resonator. We experimentally compared two different approaches for the cavity design, both using three side-pumped Nd:YAG laser heads. We obtained a record-high average output power of up to 27 W with close to diffraction-limited beam quality, a pulse duration of 19 ps, a pulse energy of 0.5 7J, and 23 kW peak power. Single-pass second-harmonic generation in a 10-mm-long LBO crystal yields 16.2 W of 532-nm radiation.  相似文献   

17.
Molecular caesium vapour were used for passive Q-switching of YAG: Nd, glass: Nd, YAL: Nd, GSGG: Cr, Nd and YLF: Nd lasers. The output pulse duration control possibility by means of Cs2 vapour temperature change has been shown.  相似文献   

18.
The theory of active-passive mode-locked solid-state lasers is developed where the passive mode-locking is achieved by a nonlinear mirror. Steady-state cw numerical solutions are analyzed in detail for the case of a Nd: YAG laser. The steady-state pulse duration can be reduced by an order of magnitude as compared to the pure active mode-locking regime.On leave from Department of Quantum Electronics, Faculty of Physics, University of Sofia, BG-1126 Sofia, Bulgaria  相似文献   

19.
This paper presents a Nd : YAG laser operating in free running (FR) regime, with a pulse duration (20 μs) shorter than conventional systems (>200 μs), mainly developed for applications in laser cleaning of stones, especially for the restoration of cultural heritage. The system was also optimized to achieve high energy and low divergence, for easy coupling with optical fibers. The unusual pulse temporal regime induces a spiky behavior of the laser output which could also help in the application. Details on the technologies for the flashlamps power supplies, including the discharge circuits needed to achieve the short pulses, are given. Application trials on artworks and artificial samples are also discussed. Results show that the intermediate pulse duration avoids the mechanical damage induced by the photomechanical effect of Q-switch lasers and the thermal damage, as superficial melting, usually induced by long pulse FR lasers.  相似文献   

20.
李振华  周复正 《光学学报》1992,12(9):84-789
通过速率方程理论对应用增益开关技术的LD端面泵浦Nd:YAG激光器的动态特性进行了较详细的研究.实验以输出波长808nm的LD列阵作端面泵浦源,得到了脉冲宽度小于200ns,峰值功率接近200mW的1.064μm激光输出.实验结果与理论计算结果基本符合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号