首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
荧光光谱对自组装多肽作为药物载体的初步研究   总被引:1,自引:0,他引:1  
为解决疏水性药物普遍存在的因水中溶解度低而给药困难、生物利用度低的问题,采用了新型两亲性自组装多肽RGA16(Ac-RADAGAGARADAGAGS-NH2)作为载体包裹和释放疏水性模型药物.以芘为模型疏水性药物,以鸡蛋卵磷脂脂质体模拟细胞膜,通过稳态荧光光谱表征和测定芘的存在形式和浓度.两亲性自组装多肽RGA16能够在水溶液中稳定模型疏水性药物芘的晶体.扫描电镜图像显示多肽RGA16与芘晶体相互吸引,两者形成10 μm以上大小的复合体.在机械搅拌下多肽RGA16与水溶液中的芘相瓦作用5 d左右形成稳定的胶体混悬液(多肽-芘复合体).被多肽包裹时,芘以晶体的形式存在.而当与EPC脂质体溶液混合时,芘可从多肽的包裹中以分子形式释放到EPC的双层膜中.芘从自组装多肽所稳定的胶态晶体向EPC脂质体释放的过程采用连续时间扫描稳态荧光光谱加以观察.通过将释放过程中芘单体的荧光强度与标准曲线相比较,确定了特定时间点EPC脂质体中芘的转移量.以上结果表明:该两亲性自组装多肽RGA16具有作为小分子量疏水性药物载体的潜力.  相似文献   

2.
We examined the steady-state and time-resolved fluorescence spectral properties of the DNA stain Hoechst 33342 for one-photon (OPE) and two-photon (TPE) excitation. Hoechst 33342 was found to display a large cross section for two-photon excitation within the fundamental wavelength range of pyridine 2 and rhodamine 6G dye lasers, 690 to 770 and 560 to 630 nm, respectively. The time-resolved measurements show that intensity decays are similar for OPE- and TPE. The anisotropy decay measurements of Hoechst 33342 in ethanol revealed the same correlation times for TPE as observed for OPE. However, the zero-time anisotropies recovered from anisotropy decay measurements are 1.4-fold higher for TPE than for OPE. The anisotropy spectra of Hoechst 33342 were examined in glycerol at ?20°C, revealing limiting values close to the theoretical limits for OPE (0.4) and TPE (0.57). The steady-state anisotropy for OPE decreases in the shorter-wavelength region (R6G dye laser, 280–315 nm), but the two-photon anisotropy for 560 to 630-nm excitation remains as high as in the long-wavelength region (690–770 nm). This result suggests that one-photon absorption is due to two electronic, but only one transition contributes to the two-photon absorption over the wavelength range from 580 to 770 nm. Our demonstration of these favorable two-photon properties for Hoechst 33342, and the high photostability of the dye reported by other laboratories, suggests that this dye will be valuable for time-resolved studies of DNA with TPE and for two-photon fluorescence microscopy.  相似文献   

3.
Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.  相似文献   

4.
S.A. Menchón  C.A. Condat 《Physica A》2011,390(20):3354-3361
Most chemotherapeutic treatments use drugs that target proliferating cancer cells. Therefore, they do not affect quiescent cells which are naturally resistant. Surviving cancer cells can reactivate their cell cycles in the intervals between doses, becoming proliferative again and thus restarting tumor growth. In this work, we present a mathematical model to study the impact of quiescent cells on chemotherapy effectiveness. Our simulations show that, although tumor growth is delayed after the beginning of each dose, the resistance of quiescent cells is enough to reactivate it due to accelerated repopulation, eventually causing therapy failure even in the absence of acquired resistance.  相似文献   

5.
Spectral-fluorescent properties of benzothiazole styryl monomer (Bos-3) and homodimer (DBos-21) dyes in presence of DNA were studied. The dyes enhance their fluorescence intensity in 2–3 orders of magnitude upon interaction with DNA. Studied styrylcyanines in DNA presence demonstrate rather high values of two-photon absorption (TPA) cross-section, which are comparable with the values of TPA cross section of the rhodamine dyes. An applicability of the styrylcyanines as probes for the fluorescence microscopy of living cells was studied. It was shown that both dyes are cell-permeable but homodimer dye DBos-21 produces noticeably brighter staining of HeLa cells comparing with monomer dye Bos-3. Molecules of DBos-21 initially bind to the nucleic acids- containing cell organelles (presumable mitochondria) and are able to penetrate into the cell nucleus. Thus, homodimer styryl DBos-21 dye is viewed as efficient stain for single-photon and two-photon excitation fluorescence imaging of living cells.  相似文献   

6.
The dimeric cyanine dyes, YOYO-1 and TOTO-1, are widely used as DNA probes because of their excellent fluorescent properties. They have a higher fluorescence quantum yield than ethidium homodimer, DAPI and Hoechst dyes and bind to double-stranded DNA with high affinity. However, these dyes are limited by heterogeneous staining at high dye loading, photocleavage of DNA under extended illumination, nicking of DNA, and inhibition of the activity of DNA binding enzymes. To overcome these limitations, seven novel cyanine dyes (Cyan-2, DC-21, DM, DM-1, DMB-2OH, SH-0367, SH1015-OH) were synthesized and tested for fluorescence emission, resistance to displacement by Mg2+, and the ability to function as reporters for DNA unwinding. Results show that Cyan-2, DM-1, SH-0367 and SH1015-OH formed highly fluorescent complexes with dsDNA. Of these, only Cyan-2 and DM-1 exhibited a large fluorescence enhancement in buffers, and were resistant to displacement by Mg2+. The potential of these two dyes to function as reporter molecules was evaluated using continuous fluorescence, DNA helicase assays. The rate of DNA unwinding was not significantly affected by either of these two dyes. Therefore, Cyan-2 and DM-1 form the basis for the synthesis of novel cyanine dyes with the potential to overcome the limitations of YOYO-1 and TOTO-1.  相似文献   

7.
Video-enhanced fluorescence imaging was used to quantify the DNA content in live two-cell mouse embryos. DNA was stained with the vital fluorophore Hoechst 33342. Conditions of dye concentration and irradiation were such that two-cell embryos could be kept in the constant presence of the dye for about 24 h without a major effect on their furtherin vitro viability. Total nuclear fluorescence intensity of stained two-cell embryos was measured twice under these conditions, i.e., in G1 (1 h after cleavage) and in G2 (15–18 h after cleavage), by image analysis. After correcting for the fluctuations in excitation intensity and for the spatial nonhomogeneities of the optical system (lenses and sensor), the mean total nuclear fluorescence intensity was about twofold higher in G2 than in G1 (R=1.99 to 2.25), and this increase was abolished by the addition of aphidicolin, an inhibitor of replication. The fluorescence increase did not depend on the Hoechst concentration in the range of 10–40 ng/ml, i.e., in the range of embryo viability. The coefficient of variation of the total nuclear fluorescence intensity measured under these conditions was rather large (10 to 20%). Nevertheless, the mean value of fluorescence intensity in G1 of nuclei of a given pool represents an appropriate reference to measure the increase in fluorescence intensity between G1 and G2.  相似文献   

8.
We report the Förster resonance energy transfer (FRET)-labeling of liposomal vesicles as an effective approach to study in dynamics the interaction of liposomes with living cells of different types (rat hepatocytes, rat bone marrow, mouse fibroblast-like cells and human breast cancer cells) and cell organelles (hepatocyte nuclei). The in vitro experiments were performed using fluorescent microspectroscopic technique. Two fluorescent dyes (DiO as the energy donor and DiI as an acceptor) were preloaded in lipid bilayers of phosphatidylcholine liposomes that ensures the necessary distance between the dyes for effective FRET. The change in time of the donor and acceptor relative fluorescence intensities was used to visualize and trace the liposome-to-cell interaction. We show that FRET-labeling of liposome vesicles allows one to reveal the differences in efficiency and dynamics of these interactions, which are associated with composition, fluidity, and metabolic activity of cell plasma membranes.  相似文献   

9.
Qin  Lijun  Gong  Ting  Hao  Haixia  Wang  Keyong  Feng  Hao 《Journal of nanoparticle research》2013,15(12):1-15
Chitosan was conjugated with folic acid (FA) and the resulting chitosan derivatives with a FA-substitution degree of around 6 % was used to synthesize FA-conjugated chitosan–polylactide (FA–CH–PLA) copolymers to build a drug carrier with active targeting characteristics for the anticancer drug of paclitaxel (PTX). Selected FA–CH–PLAs with various polylactide percentages of about 40 wt% or lower were employed to fabricate nanoparticles using sodium tripolyphosphate as a crosslinker, and different types of nanoparticles were endued with similar average particle-sizes located in a range between 100 and 200 nm. Certain types of PTX-loaded FA–CH–PLA nanoparticles having encapsulation efficiency of around 90 % and initial load of about 12 % were able to release PTX in a controlled manner with significant regulation by polylactide content in FA–CH–PLAs. Targeting characteristic of achieved nanoparticles was confirmed using FA-receptor-expressed MCF-7 breast cancer cells. The uptake of PTX revealed that optimized FA–CH–PLA nanoparticles with an equivalent PTX-dose of around 1 μg/mL could have more than sixfold increasing abilities to facilitate intracellular paclitaxel accumulation in MCF-7 cells after 24 h treatment as compared to free PTX. At a relatively safe equivalent PTX-dose for normal MCF-10A mammary epithelial cells, the obtained results from Hoechst 33342 staining indicated that optimized PTX-loaded FA–CH–PLA nanoparticles had more than threefold increasing abilities to induce MCF-7 cell apoptosis in comparison to free PTX.  相似文献   

10.
Sparse ZnO nanorod arrays(NRAs)are fabricated on transparent conducting oxide coated glass substrates by using a modified liquid phase epitaxial growth method.By adjusting the polymer concentrations and the spin-coating parameters,full infiltration of poly(3-hexylthiophene)(P3HT)into the as-prepared ZnO NRAs is achieved at 130°C in vacuum.A third component is incorporated into the P3HT/ZnO NRAs ordered bulk heterojunctions(BHJs)either through ZnO surface modification with N719dye or CdS shell layer or by inclusion of a fullerene derivative into the P3HT matrix.Experimental results indicate that performances of the hybrid solar cells are improved greatly with the incorporation of a third component.However,the working principles of these third components differ from one another,according to morphology,structure,optical property,charge transfer and interfacial properties of the composite structures.An ideal device architecture for hybrid solar cells based on P3HT/ZnO NRAs ordered BHJs is proposed,which can be used as a guidance to further increase the power conversion efficiency of such solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号