首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 114 毫秒
1.
The heat transfer in the ultrasonic processing of stainless steel melt is studied in this thesis. The temperature field is simulated when the metal melt is treated with and without ultrasound. In order to avoid the erosion of high temperature melt, ultrasound was introduced from the bottom of melt. It is found that the temperature of melt apparently increases when processed with ultrasound, and the greater the ultrasonic power is, the higher the melt temperature will be; ultrasonic processing can reduce the temperature gradient, leading to more uniform temperature distribution in the melt. The solidification speed is obviously brought down due to the introduction of ultrasound during solidification, with the increasing of ultrasonic power, the melt temperature rises and the solidification speed decreases; as without ultrasound, the interface of solid and mushy zone is arc-shaped, so is the interface of liquid and mushy zone, with ultrasound, the interface of solid and mushy zone is still arc-shaped, but the interface of liquid and mushy zone is almost flat. The simulation results of temperature field are verified in experiment, which also indicates that the dendrite growth direction is in accord with thermal flux direction. The effect of ultrasonic treatment, which improves with the increase of treating power, is in a limited area due to the attenuation of ultrasound.  相似文献   

2.
This study describes a self-consistent theoretical model of simulating diffusion-controlled kinetics on the liquid–solid phase boundary during high-speed solidification in the melt pool after the selective laser melting (SLM) process for titanium matrix composite based on Ti–TiC system. The model includes the heat transfer equation to estimate the temperature distribution in the melt pool and during crystallization process for some deposited layers. The temperature field is used in a micro region next to solid–liquid boundary, where solute micro segregation and dendrite growth are calculated by special approach based on transient liquid phase bonding. The effect of the SLM process parameters (laser power, scanning velocity, layer thickness and substrate size) on the microstructure solidification is being discussed.  相似文献   

3.
In the present study, heavy oil viscosity reduction in Daqing oil field was investigated by using an ultrasonic static mixer. The influence of the ultrasonic power on the viscosity reduction rate was investigated and the optimal technological conditions were determined for the ultrasonic treatment. The mechanism for ultrasonic viscosity reduction was analyzed. The flow characteristics of heavy oil in the mixer under the effect of cavitation were investigated using numerical modeling, and energy consumptions were calculated during the ultrasonic treatment and vis-breaking processes. The experimental results indicated that the ultrasonic power made the largest impact on the viscosity reduction rate, followed by the reaction time and temperature. The highest viscosity reduction rate was 57.34%. Vacuole was migrated from the axis to the wall along the fluid, accelerating the two-phase transmission and enhancing the radial flow of the fluid, which significantly improved the ultrasonic viscosity reduction. Compared to the vis-breaking process, the energy consumption of ultrasonic treatment process was 43.03% lower when dealing with the same quality heavy oil. The optimal process conditions were found to be as follows: ultrasonic power of 1.8 kW, reaction time of 45 min and reaction temperature of 360 °C. The dissociation of the molecules of heavy oil after ultrasonication has been checked. After being kept at room temperature 12 days, some light components were produced by the cavitation cracking, so the viscosity of the residual oil could not return to that of the original residual oil, which meant that the “cage effect” was not reformed.  相似文献   

4.
The objective of the present study was to assess the effects of ultrasound pretreatment on the quality of dry-cured yak meat. The ultrasonic power with 0, 200, 300 and 400 W (ultrasonic frequency of 20 kHz) were used to assist processing of dry-cured yak meat. The meat quality, nutrient substances, sensory quality, electronic nose, electronic tongue and volatile compounds of dry-cured yak meat were determined. The results indicated that the moisture content and hardness value of ultrasonic treatment group was significantly lower compared to the control group (P < 0.05). Ultrasonic treatment increased the value of b*, and decreased the value of L*, a*, pH, chewiness, melting temperature and enthalpy. Springiness value significantly increased from control group to 300 W of ultrasonic power group. Shear force significantly decreased with the increase of ultrasonic power (P < 0.05). Ultrasonic treatment had no effect on the TVB-N content, but it could increase the TBARS content. Ultrasonic treatment could significantly increase the essential FAA (EFAA) and total FAA (P < 0.05). In addition, the saturated fatty acid (SFA) content significantly increased with the increase of ultrasonic power (P < 0.05). Ultrasound treatment negatively affected the meat’s color, smell, and taste but increased its tenderness and the overall acceptability. It also significantly increased alcohols and aldehydes contents (P < 0.05), which were consistent with the measurement of electronic nose and electronic tongue. The results demonstrated that the the appropriate ultrasonic power assisted in the processing improves quality of dry-cured yak meat, particularly for the power of 300 W.  相似文献   

5.
This study aimed to investigate the effect of ultrasonic power and temperature on the impurity removal rate during conventional and ultrasonic-assisted leaching of aphanitic graphite. The results showed that the ash removal rate increased gradually (∼50 %) with the increase in ultrasonic power and temperature but deteriorated at high power and temperature. The unreacted shrinkage core model was found to fit the experimental results better than other models. The Arrhenius equation was used to calculate the finger front factor and activation energy under different ultrasonic power conditions. The ultrasonic leaching process was significantly influenced by temperature, and the enhancement of the leaching reaction rate constant by ultrasound was mainly reflected in the increase of the pre-exponential factor A. Ultrasound treatment improved the efficiency of impurity mineral removal by destroying the inert layer formed on the graphite surface, promoting particle fragmentation, and generating oxidation radicals. The poor reactivity of hydrochloric acid with quartz and some silicate minerals is a bottleneck limiting the further improvement of impurity removal efficiency in ultrasound-assisted aphanitic graphite. Finally, the study suggests that introducing fluoride salts may be a promising method for deep impurity removal in the ultrasound-assisted hydrochloric acid leaching process of aphanitic graphite.  相似文献   

6.
Spectral dependences of the coefficients of absorption by free carriers and of multiphoton absorption by a silicon lattice in the region of the interstitial oxygen band at 5.8 μm are established. A procedure for measurement of the distribution of oxygen and alloying impurities in silicon ingots is given. The effectiveness of the spectrometers developed for controlling the segregation of impurities and nonstationary convection of the silicon melt in growing ingots by the Czochralski method is shown. Belarusian State University, 4, F. Skorina Ave., Minsk, 220080, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 5, pp. 655–659, September–October, 1997.  相似文献   

7.
The electrochemical mechanism of Fe-Ni electrodeposition under ultrasonic was investigated by electrochemistry methods. Linear scanning voltammetry and cyclic voltammetry were used to show that the deposition process changed from the diffusion control under static conditions to an electrochemical control under ultrasonic conditions. Chronoamperometry curves showed that the Fe-Ni deposit occurred by a mechanism that instantaneous nucleation is followed by three-dimensional growth under charge transfer control. Chronopotentiogram indicated that because of the intensity of the ultrasound stripping effect, high ultrasonic power is unsuitable for electroforming Fe-Ni alloy, and a high current density is also not appropriate. Thus, the optimum parameters for Fe-Ni electrodeposition under ultrasonic conditions are ultrasonic power between 80 and 100 W (power density 0.28–0.35 W/cm2), and a current density lower than 10 mA/cm2 with temperature 323 K and pH 3. Experiments were performed to verify that the Fe-Ni masks prepared by ultrasonic-assisted electroforming had a good surface quality. The increase in ultrasonic power can obtain a larger grain size, thus got a low thermal expansion coefficient and a high hardness. Therefore, ultrasonic-assisted electrodeposition technology provides an effective and practically feasible manufacturing method for OLED Fe-Ni mask preparation.  相似文献   

8.
赵福泽  朱绍珍  冯小辉  杨院生 《物理学报》2015,64(14):144302-144302
建立了高能超声制备碳纳米管增强AZ91D复合材料的声场计算模型, 并采用有限元方法计算了20 kHz超声直接作用下AZ91D熔体的声场分布, 熔体声场呈辐射状分布, 距离声源越远, 声压幅值越低. 采用超声作用下单一气泡变化模型描述超声作用下AZ91D 熔体中的空化效应, 通过对Rayleigh-Plesset方程的求解, 得到了不同声压作用下气泡的变化规律, 获得了声压幅值与熔体空化效应的关系, 声压幅值越大, 气泡溃灭半径阈值越小, 熔体发生空化效应越容易. 计算了固定坩埚尺寸、不同超声探头没入熔体深度情况下的声场, 得到了超声探头最优没入深度为30 mm左右. 将声场计算结果以及AZ91D熔体中空化效应的发生规律进行综合分析, 得到了超声功率对有效空化区域的影响规律, 超声功率较大时, 有效空化区域体积随超声功率近似成线性增大. 最后, 通过甘油水溶液超声处理实验, 验证了模拟计算的准确性.  相似文献   

9.
Solute segregation was measured at both the {310} symmetrical tilt grain boundary and the (310) free surface of a sample of an Fe-6at%Si alloy containing traces of P, S, N and C at 873 K. Large phosphorus enrichment and silicon depletion characterize the grain boundary segregation in spite of a different bulk concentration of nitrogen. The surface segregation in nitrogen-containing samples is controlled by strong cosegregation of Si and N, resulting in the formation of a stable SixNy 2D surface compound, whereas pronounced surface segregation of sulphur dominates in denitridized samples. The differences of grain boundary and surface segregation are discussed as a kind of “anisotropy of interfacial segregation” on the basis of Guttmann's theory with different values of free energies of segregation to grain boundary and free surface. They also suggest that the measurements of surface segregation cannot be unambiguously used for predicting the grain boundary segregation. In some non-brittle multicomponent systems, a better way of predicting segregation behavior at grain boundaries would be the measurement of grain boundary segregation in a related system with solute concentrations that cause embrittlement. The findings can then be applied to the required alloy composition on the basis of Guttmann's theory.  相似文献   

10.
The aim of this study was to clarify the possibilities to increase the amount of soluble chemical oxygen demand (SCOD) and methane production of sludge using ultrasound technologies with and without oxidising agents. The study was done using multivariate data analyses. The most important factors affected were discovered. Ultrasonically assisted disintegration increased clearly the amount of SCOD of sludge. Also more methane was produced from treated sludge in anaerobic batch assays compared to the sludge with no ultrasonic treatment. Multivariate data analysis showed that ultrasonic power, dry solid content of sludge (DS), sludge temperature and ultrasonic treatment time have the most significant effect on the disintegration. It was also observed that in the reactor studied energy efficiency with high ultrasound power together with short treatment time was higher than with low ultrasound power with long treatment time. When oxidising agents were used together with ultrasound no increase in SCOD was achieved compared the ultrasonic treatment alone and only a slight increase in total organic carbon of sludge was observed. However, no enhancement in methane production was observed when using oxidising agents together with ultrasound compared the ultrasonic treatment alone. Ultrasound propagation is an important factor in ultrasonic reactor scale up. Ultrasound efficiency rose linearly with input power in sludge at small distances from the transducer. Instead, ultrasound efficiency started even to decrease with input power at long distances from the transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号