首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adsorption behavior of binary mixed alkanethiol molecules of octanethiol (OT) and dodecanethiol (DDT) on Au substrate has been investigated with a variation of molar fraction in solution at room temperature. Linear-scan voltammograms (LSV) taken from the binary mixed self-assembled monolayer (SAM) on Au/Si showed a single reductive desorption peak, continuously shifting with a variation of mixing ratio in solution. Molecule-resolved scanning tunneling microscope (STM) images obtained from the binary SAM on Au/mica showed the phase separation with a few nanometer sized domains. The difference in the chain length between OT and DDT was not large enough to induce the phase separation with much larger domains, which could be well detected by LSV. There was no preferential adsorption of DDT to OT.  相似文献   

2.
The present scanning tunneling microscopy study reports on the growth processes of Co vapor-deposited on a dodecanethiol (DDT) self-assembled monolayer (SAM)/Au(111). We observe strongly modified surface and depth diffusions of Co adatoms depending on the growth temperature. Co deposited at 300 K shows an extremely incomplete regime of condensation on the organic layer. Besides, Co penetrates the DDT monolayer and resides at the DDT/Au(111) interface as 2D clusters. This phenomenon takes place through defects in the SAM which are transient channels. In contrast, Co deposited at 50 K shows a complete condensation and nucleates on defects of the SAM layer as 3D islands sitting most likely on top of the DDTs. These results are of interest in the growing field of organic spintronics where the quality of the organic/ferromagnetic interface is a key issue.  相似文献   

3.
An l-glutamic acid-derived lipid with a terminal thiol has been synthesized and its corresponding self-assembled structure on Au(1 1 1) surfaces described. The surface morphology of the lipid self-assembled monolayer (SAM) exhibits nano-order patterning, where the height of the monolayer (approximately 1.5 nm) could be interpreted as due to the monolayer structure estimated from molecular models. The molecular orientation in the monolayer is almost perpendicular to the Au(1 1 1) surface depending on the three-point hydrogen-bonding sites in the molecule.  相似文献   

4.
We have characterized the structural behaviour of ethanethiol self-assembled monolayers (SAMs) on Au(1 0 0) in 0.1 M H2SO4 as a function of electrode potential, using in-situ scanning tunneling microscopy (STM). After modification of the Au(1 0 0) electrode in an ethanolic solution of ethanethiol, STM images in air reveal a disordered thiol adlayer and a surface that is covered by 25% of monoatomic high gold islands, which originate from lifting of the (hex) reconstruction during thiol adsorption. In contrast to alkanethiol SAMs on Au(1 1 1), no vacancy islands are seen on the Au(1 0 0) surface. After contact of the SAM-covered Au(1 0 0) electrode with 0.1 M H2SO4 under potential control, two different structures are observed, depending on the potential range positive or negative of +0.3 V vs. SCE. In both cases the emerging ordered structures are quadratic, their unit cells being rotated by 45° with respect to the main crystallographic axes of the substrate. However, the ordered structure at negative potentials is more densely packed than the one at positive potentials, and in addition the surface reveals an almost 50% coverage of monoatomic high gold islands. The structure of the SAM changes reversibly with the electrode potential, the long range order gradually decreasing with each transition. Concomittant with this structure transition monoatomic deep holes are created when the potential is stepped from the cathodic to the anodic region. The experimental observations are rationalized by a high mobility of the gold thiolate moiety, causing the surface density of the SAM-covered gold to change drastically with potential.  相似文献   

5.
The growth kinetics of self-assembled monolayers (SAMs) of thiophene compounds on Au(111) surfaces was revealed by Fourier-transform infrared reflection absorption spectroscopy (FT-IR-RAS). Thiophene and terthiophene form well-ordered SAMs on Au(111) surfaces by immersing gold substrates into their ethanol solutions for ca. 15 h. Gibbs free energies for the adsorption processes of thiophene and terthiophene were found to be identical. However, the growth and molecular orientation of SAMs are different between two thiophene compounds. Terthiophene in SAMs orients parallel to the surface. The SAM growth of terthiophene obeys a time-dependent Langmuir scheme. On the other hand, the thiophene SAM undergoes a two-step growth process with unique molecular orientations. In the primary phase, thiophene assumes a parallel orientation on the Au(111) surface. In the second phase, thiophene is oriented close to the normal of the surface. The different growth process between thiophene and terthiophene is attributable to the topology of sulfur positions in the molecules. Received 23 May 2001 and Received in final form 11 February 2002  相似文献   

6.
The structure of ultrathin NaCl films on Au(1 1 1) and on Au(11 12 12), as well as the one of bimolecular 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) and 1,4-bis-(2,4-diamino-1,3,5,-triazine)-benzene (BDATB) islands on NaCl films on both surfaces have been studied with a low-temperature scanning tunnelling microscope. We show that intermixed bimolecular assemblies based on selective three-fold hydrogen-bonding (H-bonding), that have previously been observed on Au(1 1 1) and on Au(11 12 12), can also be stabilized on insulating NaCl films on Au, however, only if these films are grown on Au(11 12 12) and not on Au(1 1 1). The behaviour of the heterocomplex structures is found to be largely influenced by the structural properties of the underlying substrate and by the number of NaCl layers. On a partly NaCl-covered Au(1 1 1) surface, the excess of molecules after completion of the first layer on Au prefers to form a second molecular layer based on ordered heterocomplex structures rather than to adsorb on the NaCl islands. The use of a vicinal surface together with the strong cohesion characteristic of the NaCl film introduces smooth elastic deformations on the NaCl(0 0 1) plane. As a consequence, the periodically modified structure of the overlayer provides preferential binding sites and allows adsorption of two-dimensional molecular structures. In contrast to what is observed on Au(11 12 12), the molecular domains on the NaCl film do not follow the Au step directions, but the NaCl(0 0 1) high symmetry directions. Our results provide a strategy to increase the adsorption energy of flat molecules on insulating layers by choosing a vicinal metal substrate.  相似文献   

7.
David Loffreda 《Surface science》2006,600(10):2103-2112
Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.  相似文献   

8.
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer.In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.  相似文献   

9.
Silane compounds provide many applications in biotechnology field. Chemically adsorbed silanes with reactive terminal groups are used for fabrication of functional material, which can serve as a model substrate for fundamental studies of different surface interactions or as a platform for further chemical reactions.In this work, silane compounds with amine groups were the area of interest. The studies were focused on investigation of amine group interaction with different acid groups. The interactions were probed using atomic force microscope operating in force spectroscopy mode. An atomic force microscope gold tip, functionalized with thiol compounds, served as acid-terminated surface. Interactions at interfaces between the silane self-assembled monolayer (SAM) and the thiol SAM were measured in liquid environment. The results of the measurements were set against the theoretical studies performed by AM1d and PM5 semi-empirical methods. Moreover, prior to chemical force spectroscopy measurements the silane films coverage quality was studied as well. Fourier transform infrared (FTIR) spectrometer and atomic force microscope served as control equipment.  相似文献   

10.
We evaluated the adsorption of SO3 molecule on Au (1 1 1) surface using first principles calculation by a slab model with a periodic boundary condition. We find that there are six stable adsorption configurations on an Au surface, where the SO3 molecule is adsorbed above the three-fold fcc and hcp hollow sites and on the atop site. In two of these configurations, S and two O atoms are bound to the Au atoms, the next two configurations have all the three O atoms bound to the Au surface atoms, and the last two configurations have the S atom bound to an Au surface atom on the atop site and O atoms situated above the hollow sites. In these configurations, the electronic structures of SO3 on the Au surface show that molecular orbitals of SO3 and those of the Au surface are hybridized in the active metal d-band region, that the localized molecular orbitals in SO3 are stabilized, and that charge is transferred from Au to S 3p by SO3 adsorption on the Au surface though there is little other interaction of the S and O (bound to Au) component with Au. Moreover, the bond between the S and O atoms bound to Au is weakened due to SO3 adsorption on the Au surface due to the charge polarization of the O-Au bond. This interaction is likely to encourage the S-O bond to break.  相似文献   

11.
The interaction of sulfur with gold surfaces has attracted considerable interest due to numerous technological applications such as the formation of self-assembled monolayers and as a chemical sensor. Here, we report on the interaction of sulfur with Au(1 1 1) at two different temperatures (300 K and 420 K) studied by real-time scanning tunnelling microscopy, low energy electron diffraction and Auger electron spectroscopy. In the low coverage regime (<0.1 ML), S adsorption lifts the herringbone reconstruction of the clean Au(1 1 1) surface indicating a lateral expansion of the surface layer. An ordered (√3 × √3)R30° sulfur adlayer develops as the coverage reaches ∼0.3 ML. At higher S coverages (>0.3 ML) gold surface atoms are removed from regular terrace sites and incorporated into a growing gold sulfide phase. At 300 K this process leads to the formation of a rough pit and mound surface morphology. This gold sulfide exhibits short-range order and an incommensurate, long-range ordered AuS phase develops upon annealing at 450-525 K. In contrast, formation of an ordered AuS phase via rapid step-retraction rather than etch pit formation is observed during S-interaction with Au(1 1 1) surfaces at 420 K. Our results shed new light on the S-Au(1 1 1) interaction.  相似文献   

12.
Measurements of the core-level shifts in Au 4f photoemission spectra from Au(1 1 1) at different coverages of methylthiolate and butylthiolate are reported. Adsorption leads to two components in addition to that from the bulk, one at lower photoelectron binding energy attributed to surface atoms not bonded to thiolate species, while the second component has a higher binding energy and is attributed to Au atoms bonded to the surface thiolate. The relative intensities of these surface components for the saturation coverage (mainly (√3 × √3)R30°) phases are discussed in terms of different local adsorption sites in a well-ordered surface, and favour adsorption of the thiolate species atop Au adatoms. Alternative interpretations that might be consistent with an Au-adatom-dithiolate model are discussed, particularly in the context of the possible influence of reduced coverage associated with a disordered surface. Marked differences from previously-reported results for longer-chain alkylthiolate layers are highlighted.  相似文献   

13.
The adsorption of CO on Au(3 1 0) and Au(3 2 1) was studied using a combination of thermal desorption spectroscopy and high resolution core level photoemission spectroscopy. These vicinal Au surfaces both have 6-fold coordinated atoms at the step edges but have a different terrace structure. The CO adsorption behavior was found to be very similar for both surfaces. Three different desorption peaks due to chemisorbed CO were identified, which desorb around 100 K(α), 120 K(β) and 180 K(γ), respectively. The C1s and O1s spectra of the chemisorbed CO show a complex shake-up structure. Our experimental results indicate that CO only adsorbs on the step atoms. The different desorption peaks are explained by substrate-mediated long-range interactions between the adsorbates. Comparison with literature results shows that the CO adsorption energy is not only dependent on the coordination number of the Au atoms, but that the exact geometrical structure of the surface also plays a role.  相似文献   

14.
《Surface Science Reports》2014,69(4):366-388
Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster׳s theoretically predicted ability to activate and dissociate O2 at the Au–MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide–metal interface and their effect on the adsorption characteristics of water and Au are summarized. Finally, more limited computational literature on transition metal (TM) doped CaO(100) and MgO(100) surfaces is presented. Again, Au is used as a probe species. Similar to metal-supported MgO films, Au binds more strongly than on undoped CaO(100) and becomes negatively charged. The discussion focuses on rationalization of Au adsorption with the help of Born–Haber cycle, which reveals that the so-called redox energy including the electron transfer from the dopant to the Au atom together with the simultaneous structural relaxation of lattice atoms is responsible for enhanced binding. In addition, adsorption energy dependence on the position and type of the dopant is summarized.  相似文献   

15.
V(benzene)2 sandwich cluster cations produced in the gas phase were size-selectively deposited onto a self-assembled monolayer of n-hexadecanethiols (HDT-SAM) chemisorbed on a Au(111) surface as well as onto a bare Au(111) surface. The thermal chemistry of the neutralized clusters on each substrate was studied with temperature programmed desorption (TPD). From the analyses of the threshold in the TPD, the desorption activation energies of the clusters deposited were determined to be 64.4 ±12.8 kJ/mol for the Au(111) and 130 ±10 kJ/mol for the HDT-SAM. The remarkably large desorption activation energy from the SAM suggests that the deposited clusters are incorporated into the SAM matrix and firmly trapped inside the alkyl chains of the SAM.  相似文献   

16.
A photolithographic technique was successfully employed to generate micropatterns of gold and copper by using self-assembled monolayer (SAMs) as resist materials. Copper patterns were successfully prepared from SAMs of 11-mercaptoundecanoic acid (MUA) and dodecanethiol (DDT) on Cu after UV irradiation followed by etching but gold patterns were prepared only from the SAM of MUA and not from the SAM of DDT, which revealed the difference of photooxidation of the metal–sulfur bond on SAMs. However, the maximum resolution of the pattern was about 1.0 μm on gold and 5.0 μm on copper. This may be due to lower quality packing of SAM on copper than gold. Ellipsometric and cyclovoltammetric observation of SAMs during the UV irradiation indicated the gradual removal of SAMs on copper and gold. Photopatterning of gold and copper by using SAM is more compatible with the current microelectronics process and is complementary to the microcontact printing technique.  相似文献   

17.
The interaction between polyoxometalate (POM) anions, SiMo12O404−, and a self-assembled monolayer (SAM) of dodecanethiol (DT) on Au surfaces was investigated using electrochemical methods, X-ray photoelectron spectroscopy, and scanning probe microscopy. The SiMo12O404− ions adsorb on the SAM of DT on Au to form a composite organic-inorganic hybrid layer. The adsorbed SiMo12O404− ion on the SAM layer shows its characteristic redox waves with an electron transfer rate slower than that on a bare Au electrode. The electron transfer behavior at DT−SAM could be regulated by the adsorption of SiMo12O404− depending on the charge of the investigated electroactive species: a significant increase toward a positively charged Ru(NH3)63+ ion, a moderate increase toward a neutral 1,1′-ferrocenedimethanol molecule and a slight decrease toward a negatively charged Fe(CN)63− ion. The effect of the chain length of alkanethiols on the adsorption of SiMo12O404− ion was also investigated: as the chain length decreases, the amount of the adsorbed POM increases and the electron transfer rate through the composite layers increases. The nature of SiMo12O404− ions adsorbed on the SAMs of alkanethiols on Au is discussed in detail.  相似文献   

18.
Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.  相似文献   

19.
Photosynthetic bacterial reaction centers (BRC) have shown great potential for bioengineering applications. In the present work we demonstrate their preferentially oriented immobilization on top of a mercaptopropionic acid (MPA) self assembled monolayer (SAM) formed on gold screen printed electrodes (Au-SPE). The AFM of the self assembled biofilm reveals formation of nanohole features with the depths of 2.2–2.5 nm, consistent with the thickness of the BRC (~ 3 nm). Thus, BRCs organize into a sub-monolayer film on top of the MPA SAM layer. The square-wave voltammogram of the BRC films exhibits features due to the redox reactions for the bacteriochlorophyll dimer (the strongest), bacteriopheophytin, and the quinones (weak), indicating that the BRCs are more likely immobilized with the dimer side towards the electrode surface. Non-saturating illumination of the BRC film at open circuit conditions leads to a sharp spike of negative current which could be due to the electron acceptance by the oxidized dimer.  相似文献   

20.
半金属铋(Bi)的表面合金具有的Rashba效应,和其具体结构性质有重要关联.本文结合扫描隧道显微镜(STM)和密度泛函理论(DFT),系统地研究了Bi原子在Ag(111)和Au(111)上的不同初始生长行为.在室温Ag(111)上,连续的Ag2Bi合金薄膜会优先在Ag台阶边缘形成;在570 K Ag(111)上,随着...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号