首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
The double lunar swing-by orbits are a special kind of orbits in the Earth-Moon system.These orbits repeatedly pass through the vicinity of the Moon and change their shapes due to the Moon’s gravity.In the synodic frame of the circular restricted three-body problem consisting of the Earth and the Moon,these orbits are periodic,with two close approaches to the Moon in every orbit period.In this paper,these orbits are revisited.It is found that these orbits belong to the symmetric horseshoe periodic families which bifurcate from the planar Lyapunov family around the collinear libration point L3.Usually,the double lunar swing-by orbits have k=i+j loops,where i is the number of the inner loops and j is the number of outer loops.The genealogy of these orbits with different i and j is studied in this paper.That is,how these double lunar swing-by orbits are organized in the symmetric horseshoe periodic families is explored.In addition,the 2n lunar swing-by orbits(n≥2)with 2n close approaches to the Moon in one orbit period are also studied.  相似文献   

2.
A scientific goal of the moon exploration project is to perform elemental analysis on the moon surface. The assuming of using laser-induced breakdown spectroscopy (LIBS) for this goal has been put forward. The laser plasma used by LIBS is sensitive to the surrounding atmosphere and the moon has very low ambient gas pressure on the surface, so the study of the LIBS capabilities at the low pressure was carried out.  相似文献   

3.
The possibility of the formation of a plasma–dust cloud in the exosphere of the Moon owing to impacts of meteoroids on the lunar surface is discussed. Attention is focused on dust particles at large altitudes of ~10–100 km at which measurements were performed within the NASA LADEE mission. It has been shown that a melted material ejected from the lunar surface owing to the impacts of meteoroids plays an important role in the formation of the plasma–dust cloud. Drops of the melted material acquire velocities in the range between the first and second cosmic velocities for the Moon and can undergo finite motion around it. Rising over the lunar surface, liquid drops are solidified and acquire electric charges, in particular, owing to their interaction with electrons and ions of the solar wind, as well as with solar radiation. It has been shown that the number density of dust particles in the plasma–dust cloud present in the exosphere of the Moon is ?10?8 cm?3, which is in agreement with the LADEE measurements.  相似文献   

4.
A lunar model with real texture can be obtained by mapping texture onto the lunar mesh,but the convergence in the polar regions of lunar model is a problem.In this paper,we build a 3D lunar model and solve this problem by texture partitioning and transforming.The whole lunar map is divided into four images and the polar images are transformed to circular textures before mapped to the semi-regular(SR) lunar mesh which is obtained through denoising,triangulating,subdividing and resampling the laser altimetry(LAM) data.Hundreds of lunar labels are classed into three levels and added gradually to the lunar model considering the distance between the viewpoint and the moon center.Through some techniques such as mip-map and view-dependent,the lunar model with textures and labels can be interactively browsed on a personal computer(PC) in real time.  相似文献   

5.
<正>Payloads of the first Chinese lunar mission Chang'E-1 obtained fruitful scientific data which cover a wide range of disciplines and fields.  相似文献   

6.
Two linear regression models based on absorption features extracted from CE-1 IIM image data are presented to discuss the relationship between absorption features and titanium content. We computed five absorption parameters (Full Wave at Half Maximum (FWHM), absorption position, absorption area, absorption depth and absorption asymmetry) of the spectra collected at Apollo 17 landing sites to build two regression models, one with FWHM and the other without FWHM due to the low relation coefficient between FWHM and Ti content. Finally Ti content measured from Apollo 17 samples and Apollo 16 samples was used to test the accuracy. The results show that the predicted values of the model with FWHM have many singular values and the result of model without FWHM is more stable. The two models are relatively accurate for high-Ti districts, while seem inexact and disable for low-Ti districts.  相似文献   

7.
The main goal of the present work is the search for and identification of relatively stable nuclei of superheavy elements (SHE) (Z>110) in galactic matter by fossil track study of nonconducting crystals from the surface of meteorites and rocks from the lunar regolith. Nuclei of SHE are thought to be the products of nucleosynthesis in explosive processes in our Galaxy (supernova r-process nucleosynthesis and, especially, neutron-star formation, etc.). When accelerated to relativistic energies in the Galaxy, they can produce extended trails of damage in nonconducting extraterrestrial crystals. The lifetime of such SHE in galactic cosmic rays will range from 103 to 107 yr to be registered in extraterrestrial crystals. To search for and to identify the superheavy nuclei in the galactic cosmic rays, it was proposed to use the ability of nonconducting extraterrestrial crystals such as olivines, pyroxenes, and feldspars to detect and to store for many millions of years the trails of damage produced by fast Z≥23 nuclei coming to rest in the crystalline lattice. The track lengths of fast Z≥23 nuclei are directly proportional to Z2 of these nuclei. The nuclei of SHE produce, when coming to rest in a crystal volume, tracks that are a factor of 1.6–1.8 longer than the tracks due to cosmic-ray Th and U nuclei. To identify the tracks due to superheavy nuclei, calibrations of the same crystals were performed with accelerated Au, Pb, and U nuclei. For visualization of these tracks inside the crystal volume, proper controlled annealing and chemical etching procedures were developed. Since 1980, fossil tracks due to Th and U nuclei have observed and unambiguously identified (1988) by subsequent calibrations of the olivine crystals with accelerated U, Au, and Pb ions. The number of tracks of Th and U nuclei measured in olivine crystals totaled more than 1600, as compared with the prior 30 events. The other approach to identifying SHE in nature is to search for tracks in phosphate crystals from spontaneous fission of Z ≥ 110 nuclei; these produce two-prong and three-prong fission fragment tracks and differ significantly from the tracks from spontaneous fission of 238U and 244Pu nuclei. Extraterrestrial phosphate crystals of lunar and meteoritic origin will be investigated. Such SHE nuclei can survive in crystals of extraterrestrial rocks and produce spontaneous fission tracks, if the lifetime is more than 5×107 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号