首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viscous dissipation and its contribution to turbulent kinetic energy (TKE) budget are investigated in the asymmetric jet–wake flow of a forward-curved centrifugal turbomachine. Single-plane three-dimensional turbulent data are obtained using stereoscopic particle image velocimetry (SPIV). Viscous dissipation is indirectly estimated from subgrid-scale (SGS) dissipation (SGS energy flux) by filtering velocity field using a top-hat filter. The filter scale should be within the inertial sub-range and this is ensured by spectral analysis of the measured field. Reduction of turbulent energy flux for smaller filter scales plus underestimation of viscous dissipation as compared with other TKE terms both suggest the presence of spectral shortcut. This bypass energy transfer (from intermediate scales towards dissipative scales) works in parallel with direct SGS energy transfer and affects the classical energy cascade. Analysis of TKE budget in the rotor exit region shows significant radial/circumferential variations in the contributing terms. These variations are mainly due to jet–wake–volute interactions, circumferential asymmetry of volute area and expansion of flow toward the fan outlet.  相似文献   

2.
3.
采用SST k-w低雷诺数湍流模型对加热条件下超临界压力CO2在内径di=22.14 mm,加热长度Lh=2440 mm水平圆管内三维稳态流动与传热特性进行了数值计算.通过超临界CO2在水平圆管内的流动传热实验数据验证了数值模型的可靠性和准确性.首先,研究了超临界压力CO2在水平圆管内的流动传热特点,基于超临界CO2在类临界温度Tpc处发生类液-类气“相变”的假设,揭示了水平圆管顶母线和底母线区域不同的流动传热行为.然后,分析了热流密度qw和质量流速G对水平圆管内超临界压力CO2流动换热的影响,通过获取流体域内的物性分布、速度分布和湍流分布等详细信息,重点解释了不同热流密度qw和质量流速G下顶母线内壁温度Tw,i分布产生差异的传热机理,分析结果确定了类气膜厚度d、类气膜性质、轴向速度u和湍动能k是影响顶母线壁温分布差异的主要因素.研究结果可以为超临界压力CO2换热装置的优化设计和安全运行提供理论指导.  相似文献   

4.
Compressible turbulent channel flow over a wavy surface is investigated by direct numerical simulations using high-resolution finite difference schemes. The Reynolds number considered in the present paper is 3380 based on the bulk velocity, the channel half-width and the kinetic viscosity at the wall. Four test cases are simulated and analysed at Mam = 0.33, 0.8, 1.2, 1.5 based on the bulk velocity and the speed of sound at the wall. We mainly focus on the curvature and the Mach number effects on the compressible turbulent flows. Numerical results show that although the wavy wall has effects on the mean and fluctuation quantities, log law still exists in the distribution of the wave-averaged streamwise velocity if the roughness effects are taken into consideration in the scaling of it. Near-wall streaks are broken by the wavy surface and near-wall quasi-streamwise vortices mostly begin at the upslope of the wave and pass over the crest of it. The wavy wall makes the turbulence more active and the flow easier to be blended. From the viewpoint of turbulent kinetic budgets, curvature effects strengthen both the diffusion terms and the dissipation terms. At the same time, they change the properties of the compressibility-related terms and promote more inner energy transferring into turbulent kinetic energy. As the Mach number increases, the reattachment of the mean flow is delayed, which indicates the mean separation bubble becomes larger. Concerning the near-wall coherent structures, the vortices are more sparsely distributed with the increasing of the Mach number. For the supersonic cases, shock waves appear. Though they have little effects on the mean turbulent quantities, they change the structures of the flow fields and induce local separations at the upper wall of the channel.  相似文献   

5.
Fully resolved simulations of homogeneous shear turbulence (HST) laden with sedimenting spherical particles of finite size have been performed to clarify the effects of gravity on the development of particle-laden turbulent shear flows. We consider turbulence in a horizontal flow subjected to vertical or horizontal shear. Numerical results show that the development of HST laden with finite-size particles are significantly altered by gravity. The effects of gravity lead to a slower increase in the Taylor-microscale Reynolds number, whose value is found to be well correlated with the average particle Reynolds number. The gravity also causes a slower increase in the turbulence kinetic energy (TKE) through the enhancement of energy dissipation. The change in the Reynolds shear stress (RSS) due to particles also significantly contributes to the relative change in TKE. In vertically sheared cases, RSS has high values between counter-rotating trailing vortices behind the particles, which causes a transient relative increase in TKE. In horizontally sheared cases, on the other hand, RSS is reduced in the wakes of particles, which contributes to a significant relative reduction in TKE.  相似文献   

6.
PurposeTo perform comprehensive in vitro experiments using six-directional icosahedral flow encoding (ICOSA6) 4D flow magnetic resonance imaging (MRI) under various scan conditions to analyze the robustness of velocity and turbulence quantification.Materials and methodsIn vitro flow phantoms with steady flow rates of 10 and 20 L/min were scanned using both conventional 4D flow MRI and ICOSA6. Experiments focused on comparisons between ICOSA6 and conventional four point (4P) methods, and the effects of contrast agents, velocity encoding range (Venc), and scan direction on velocity and turbulence quantification.ResultsThe results demonstrated that 1) ICOSA6 improves the velocity-to-noise ratio (VNR) of velocity estimation by 33% (on average) and results in similar turbulent kinetic energy (TKE) estimation as the 4P method. 2) Measurements with a contrast agent resulted in more than a 2.5 fold increase in average VNR. However, the improvement of total TKE quantification was not obvious. 3) TKE estimation was less affected by Venc and the scan direction, whereas turbulence production (TP) estimation was largely affected by these measurement conditions. The effects of Venc and scan direction accounted for less than 11.63% of TKE estimation, but up to 33.89% of TP estimation.ConclusionThe ICOSA6 scheme is compatible with conventional 4D flow MRI for velocity and TKE measurement. Contrast agents are effective at increasing VNR, but not signal-to-noise ratio for TKE quantification. The effects of Venc and scan direction influence total TP more than total TKE.  相似文献   

7.
The relationships between the energy of small-scale turbulence and its dissipation rate are studied based on the data of long-term high-frequency measurements of temperature and wind velocity fluctuations in urban area. It is shown that the energy of wind velocity turbulent fluctuations is linearly related to the dissipation rate ɛ. The proportionality coefficient between turbulent kinetic energy (TKE) and ɛ is dimensional and does not depend on the stratification of the atmosphere, the Richardson number, or the Monin-Obukhov scale. Measurements in different seasons show that this coefficient can be related to the mean velocity of adiabatic motions (sound speed or air temperature), which enables one to select a more universal constant, γ. A linear relationship between the temperature fluctuations variance (the characteristic of the inner energy of turbulence) and their dissipation rate is also shown. The revealed proportionality is confirmed by measurements in urban and forest conditions, as well as in the surface layer over a flat desert terrain.  相似文献   

8.
对均匀和非均匀热流边界条件下螺旋管内湍流换热进行了数值模拟,结果表明:当螺旋管表面加热功率一定时,相同Re数下均匀热流边界条件时螺旋管截面周向局部Nu数高于非均匀热流边界条件;非均匀热流边界下充分发展段的平均Nu数小于均匀热流边界;相同的De数下,曲率较小的螺旋管换热系数大。  相似文献   

9.
Diffusive heat waves play an important role in radiation hydrodynamics. In low density material, it may be possible that the radiative energy flux dominates the material energy flux and thus energy flow can be determined. In this paper by means of a simple algebraic method, the expressions characterizing the condition of diffusion approximation and supersonic transport of heat wave are found. In this case, the ratio of the radiative energy flux to the material energy flux is directly proportional to the product of Mach number M multiplied by optical depth \tau. And it may also be expressed by radiation temperature heating material. The material density and length may be determined in order to achieve above-mentioned conditions when the driven temperature and duration are given.  相似文献   

10.
应用流体动力学、传质学和电化学理论,建立三维电解槽二元电解质溶液湍流运动的物理和数学模型,针对Butler-Volmer定律下极限电流和恒电流两种情况,通过直接数值模拟研究电解质溶液传质和运动特性,分析不同Schmidt数对电解质溶液平均浓度和脉动浓度的影响,考察湍流的脉动量控制电沉积的过程规律.对瞬时脉动浓度云图的分析可知,在高Schmidt数下脉动浓度拟序结构间距密集,且集中在壁面附近,表明高Schmidt数下传质过程主要由近电极处薄层内的流动行为所主导.  相似文献   

11.
12.
On the Spectral Distribution of Turbulent Energy and Components in Turbulent Boundary Layers KOLMOGOROV 's theory of the inertial subrange of energy spectrum is presented for turbulent boundary layers. As a consequence KOVASZNAY 's formula for the transfer of kinetic energy is confirmed. It is shown that the structure of the turbulent transfer of momentum in boundary layers is analogous to the structure of the transfer of kinetic energy in the spectrum. For the spectral distribution of the turbulent shear stress in the subrange a k?3 law (k wave number) – apparently in agreement with measurements – is derived from dimensional arguments. It follows that the exchange of energy among the components of turbulent energy in the subrange is some orders of magnitude smaller than the latter.  相似文献   

13.
《Physics letters. A》2020,384(18):126377
Structure formation in turbulence can be understood as an instability of “plasma” formed by fluctuations serving as effective particles. These “particles” are quantumlike in the sense that their wavelengths are non-negligible compared to the sizes of background coherent structures. The corresponding “kinetic equation” describes the Wigner matrix of the turbulent field, and the coherent structures serve as collective fields. This formalism is usually applied to manifestly quantumlike or scalar waves. Here, we show how to systematically extend it to more complex systems using compressible Navier–Stokes turbulence as an example. In this case, the fluctuation Hamiltonian is a five-dimensional matrix operator and diverse modulational modes are present. As an illustration, we calculate these modes for a sinusoidal shear flow and find two modulational instabilities. One of them is specific to supersonic flows, and the other one is a Kelvin–Helmholtz-type instability that is a generalization of the known zonostrophic instability. Our calculations are readily extendable to other types of turbulence, for example, magnetohydrodynamic turbulence in plasma.  相似文献   

14.
TBAB包络化合物浆水平管内的传热特性研究   总被引:1,自引:0,他引:1  
TBAB包络化合物浆具有易生成、高潜热及可流动性等特点,是一种良好的蓄冷及潜热输送介质,在中央空调系统中表现出光明的节能前景.本文采用实验方法,研究了B型TBAB包络化合物浆在定热流密度条件下,水平不锈钢管内的对流换热特性,流速涵盖了层流-湍流.通过研究流速V、固相含量X_s对换热系数α的影响,发现"换热降低区"和再层流化现象,得到层流区与湍流区的临界线.最后整理出对流换热的无量纲准则式,其计算结果与实验结果的相对误差在±20%以内.  相似文献   

15.
A fully developed compressible turbulent flow in a channel with a lower wavy wall and a upper plane wall is studied using large eddy simulation. We mainly attempt to deal with the curvature effect on compressible turbulent flow over the wavy wall. Some typical quantities including the mean turbulence statistics, dilatation and baroclinic terms in the enstrophy equation, turbulent kinetic energy budgets and the near-wall turbulent structures are analysed. The results obtained in this study provide physical insight into the understanding of the effects of curvature and compressibility on wall-bounded compressible turbulent flow.  相似文献   

16.
17.
The variation in the mass yield distribution of the spontaneous fission of 252Cf as a function of the total kinetic energy (TKE) of the two fragments is investigated. With increasing TKE the peaks of the mass yield distributions become narrower.  相似文献   

18.
A parametric study of high-frequency plasma jet actuator was carried out, using the experiment- tally measured energy distribution law of arc discharge as an ideal heat source. The influence of the exit angle of the actuator on the flow field was explored. The jet flow field characteristics of the spark discharge actuator under supersonic flow (Ma0=2.0) were investigated. The results show that the energy density of heat flux increases and the jet front and forward shock wave moves faster with the decrease of discharge region, and the smaller the exit angle of the jet is, the stronger the momentum injection ability of the actuator along the flow direction is. The rule still applies under high-speed air flow conditions. Compared to the static condition, the momentum injection capability of the jet is stronger and the influence domain is larger under supersonic flow conditions.  相似文献   

19.
The multi-scale interaction between combustion and turbulence is of great importance in modifying the small-scale flame structure and kinetic energy, especially in swirling flames under practical conditions. In the present study, direct numerical simulation of swirling partially premixed flame is conducted within a model combustor under gas turbine conditions. The reactive flow is compared to the corresponding non-reactive one to investigate the influence of combustion on the scaled kinetic energy transport. Kinetic energy spectra demonstrate that the turbulent kinetic energy is reduced in the dissipative subrange while enhanced in the energetic one by the flame. The critical scale is located in the inertial subrange and close to the estimated turbulent flame thickness. Filtering analyses show that the resolved-scale kinetic energy is augmented by the increased large-scale pressure-gradient work in the reactive flow, while the subgrid-scale kinetic energy is attenuated by the enhanced small-scale viscous dissipation. The backscatter prevails in the heat release regions when the filter size is larger than the laminar flame thickness, and this effect decreases with the swirling flow developing downstream. The interaction between the kinetic energy flux and the local dilatation as well as the subgrid-scale pressure-gradient work is also investigated to achieve a comprehensive understanding about the effects of combustion on the backscatter.  相似文献   

20.
Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at freestream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibility effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely tO OCCUr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号