首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
Microresonator‐based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase‐locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve conversion efficiency ( on‐chip comb power excluding the pump) in the fiber telecommunication band with broadband mode‐locked dark‐pulse combs. We present a general analysis on the efficiency which is applicable to any phase‐locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time‐domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  相似文献   


2.
J Thévenin  M Vallet  M Brunel 《Optics letters》2012,37(14):2859-2861
A mode-locked solid-state laser containing a birefringent element is shown to emit synchronously two frequency combs associated to the two polarization eigenstates of the cavity. An analytical model predicts the polarization evolution of the pulse train, which is determined by the adjustable intracavity birefringence. Experiments realized with a Nd:YAG laser passively mode locked by a semiconductor saturable absorber mirror are in perfect agreement with the model. Locking between the two combs arises for particular values of their frequency difference, e.g., half the repetition rate, and the pulse train polarization sequence is then governed by the relative overall phase offset of the two combs.  相似文献   

3.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


4.
Brightness enhancement in an external cavity diamond Raman laser designed for high power conversion of a neodymium (1064 nm) laser to the eye‐safe spectral region is reported. Using a multimode input beam pulsed at 36 kHz pulse repetition frequency, 16.2 W with 40% overall conversion efficiency was obtained at the second Stokes wavelength of 1485 nm. The output beam had a quality factor of which is a factor of 2.7 times lower than that of the input beam, resulting in a higher overall brightness. The output power, brightness, and brightness enhancement obtained represent significant advances in performance for Raman lasers as well as other competing kHz‐pulsed eye‐safe technologies.  相似文献   

5.
The demonstration of a three‐dimensional tapered mode‐selective coupler in a photonic chip is reported. This waveguide‐based, ultra‐broadband mode multiplexer was fabricated using the femtosecond laser direct‐write technique in a boro‐aluminosilicate glass chip. A three‐core coupler has been shown to enable the multiplexing of the LP01, LP and LP spatial modes of a multimode waveguide, across an extremely wide bandwidth exceeding 400 nm, with low loss, high mode extinction ratios and negligible mode crosstalk. Linear cascades of such devices on a single photonic chip have the potential to become a definitive technology in the realization of broadband mode‐division multiplexing for increasing optical fiber capacity.  相似文献   

6.
A novel scheme to multiply the repetition rate of a monolithic self‐mode‐locked laser for generating sub‐terahertz pulse sources is successfully demonstrated. A coated Yb:KGW crystal is designed to achieve a self‐mode‐locked operation at a repetition rate of 24 GHz with an average output power exceeding 1.0 W at a pump power of 4.8 W. A partially reflective mirror is utilized to combine with the output surface of the gain medium to constitute an external Fabry‐Perot cavity. It is theoretically and experimentally verified that adjusting the external cavity length to satisfy the commensurate condition can lead to the frequency spacing to be various order harmonics of the mode spacing of the monolithic cavity. The maximum pulse repetition rate of the laser output can be up to 216 GHz and the pulse duration is as short as 330 fs. More importantly, the overall characteristics of the first‐order temporal autocorrelation traces obtained by sequentially scanning the external cavity.length display an intriguing phenomenon of temporally fractional revivals, similar to the feature of spatial Talbot revivals.

  相似文献   


7.
8.
A necessary condition for generation of bright soliton Kerr frequency combs in microresonators is to achieve anomalous group velocity dispersion (GVD) for the resonator modes. This condition is hard to implement in the visible as well as ultraviolet since the majority of optical materials are characterized with large normal GVD in these wavelength regions. We overcome this challenge by borrowing ideas from strongly dispersive coupled systems in solid state physics and optics. We show that photonic compound ring resonators can possess large anomalous GVD at any desirable wavelength, even if each individual resonator is characterized with normal GVD. Based on this concept, we design a mode‐locked frequency comb with thin‐film silicon nitride compound ring resonators in the vicinity of the rubidium D1 line (794.6 nm) and propose to use this optical comb as a flywheel for chip‐scale optical clocks.

  相似文献   


9.
The wavelength dependence of the nonlinear absorption and the third order nonlinear refraction of crystalline silicon between m and m as well as at m have been measured. It was found that at all wavelengths multi‐photon and free carrier absorption can be significant. In particular nonlinear absorption can affect silicon devices designed for the mid‐infrared that require strong nonlinear response, such as for the generation of a supercontinuum.  相似文献   

10.
A diode-pumped passively mode-locked Nd: CTGG disordered crystal laser has been experimentally demonstrated for the first time to our knowledge. Mode locked with a semiconductor saturable absorber mirror, the laser generated 5.2 ps pulses at a repetition rate of 88 MHz. After intracavity dispersion compensation, the mode-locked pulses were shortened to 4.3 ps. Multiple emission wavelengths of the Nd:CTGG laser could be synchronously mode locked under dispersion compensation.  相似文献   

11.
A diode‐pumped Yb:YAG MOPA‐System for the unprecedented generation of transform limited pulses with variable pulse duration in the range between 10 ps and 100 ps is presented. First applications relying on unique pulse parameters as modulation free spectrum, tunability and coherence length, namely the direct laser interference patterning (DLIP) and laser cooling of stored relativistic ion beams are highlighted. Pulses are generated by a mode‐locked fs‐oscillator while the spectral bandwidth is narrowed in the subsequent regenerative amplifier by an intra‐cavity grating monochromator. Two alternative booster amplifiers were added to increase the pulse energy to 100 μJ and 10 mJ, respectively.

  相似文献   


12.
The discovery of a novel phase‐locked frequency comb generated from a monolithic laser with the concurrent processes of self‐mode locking (SML) and stimulated Raman scattering (SRS) is reported. It is experimentally shown that the width of the Raman gain can be exploited to considerably expand the frequency comb of a monolithic SML crystal laser via the SRS process. At a pump power of 6.5 W, an output power of 140 mW in the Stokes wave with a pulse width as narrow as 2.9 ps at a pulse repetition rate of 6.615 GHz is obtained. The present finding not only provides useful insights into the monolithic intracavity SRS process but also paves the way for generating mode‐locked pulses based on monolithic self‐Raman crystals.  相似文献   

13.
Near‐field optical microscopy techniques provide information on the amplitude and phase of local fields in samples of interest in nanooptics. However, the information on the near field is typically obtained by converting it into propagating far fields where the signal is detected. This is the case, for instance, in polarization‐resolved scattering‐type scanning near‐field optical microscopy (s‐SNOM), where a sharp dielectric tip scatters the local near field off the antenna to the far field. Up to now, basic models have interpreted S‐ and P‐polarized maps obtained in s‐SNOM as directly proportional to the in‐plane ( or ) and out‐of‐plane () near‐field components of the antenna, respectively, at the position of the probing tip. Here, a novel model that includes the multiple‐scattering process of the probing tip and the nanoantenna is developed, with use of the reciprocity theorem of electromagnetism. This novel theoretical framework provides new insights into the interpretation of s‐SNOM near‐field maps: the model reveals that the fields detected by polarization‐resolved interferometric s‐SNOM do not correlate with a single component of the local near field, but rather with a complex combination of the different local near‐field components at each point (, and ). Furthermore, depending on the detection scheme (S‐ or P‐polarization), a different scaling of the scattered fields as a function of the local near‐field enhancement is obtained. The theoretical findings are corroborated by s‐SNOM experiments which map the near field of linear and gap plasmonic antennas. This new interpretation of nanoantenna s‐SNOM maps as a complex‐valued combination of vectorial local near fields is crucial to correctly understand scattering‐type near‐field microscopy measurements as well as to interpret the signals obtained in field‐enhanced spectroscopy.

  相似文献   


14.
The generation of sub‐optical‐cycle, carrier–envelope phase‐stable light pulses is one of the frontiers of ultrafast optics. The two key ingredients for sub‐cycle pulse generation are bandwidths substantially exceeding one octave and accurate control of the spectral phase. These requirements are very challenging to satisfy with a single laser beam, and thus intense research activity is currently devoted to the coherent synthesis of pulses generated by separate sources. In this review we discuss the conceptual schemes and experimental tools that can be employed for the generation, amplification, control, and combination of separate light pulses. The main techniques for the spectrotemporal characterization of the synthesized fields are also described. We discuss recent implementations of coherent waveform synthesis: from the first demonstration of a single‐cycle optical pulse by the addition of two pulse trains derived from a fiber laser, to the coherent combination of the outputs from optical parametric chirped‐pulse amplifiers.

  相似文献   


15.
An all‐optical phase modulation method for the linear readout of integrated interferometric biosensors is demonstrated, merging simple intensity detection with the advantages offered by spectral interrogation. The phase modulation is introduced in a simple and cost‐effective way by tuning a few nanometers the emission wavelength of commercial laser diodes, taking advantage of their well‐known drawback of power–wavelength dependence. The method is applied to the case of a bimodal waveguide (BiMW) interferometric biosensor, fabricated with standard silicon technology and operated at visible wavelengths, rendering a detection limit of 4 × 10 7 refractive index units for bulk sensing. The biosensing capabilities of the phase‐linearized BiMW device are assessed through the quantitative immunoassay of C‐reactive protein, a key protein in inflammatory processes. This method can be applied to any modal interferometer.

  相似文献   


16.
The production of a broadband supercontinuum spanning from 1.8 μm to >7.5 μm is reported which was created by pumping a chalcogenide glass waveguide with ≈320 fs pulses at 4 μm. The total power was ≈20 mW and the source brightness was 100 that of current synchrotrons. This source promises to be an excellent laboratory tool for infrared microspectroscopy.  相似文献   

17.
Monocrystalline titanium dioxide (TiO2) micro‐spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii m through near‐field time‐domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub‐wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro‐resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all‐dielectric metamaterial technology.

  相似文献   


18.
In single crystals of the beryllium silicate Be2SiO4 with trigonal symmetry , known also as the mineral phenakite, χ(3)‐nonlinear lasing by stimulated Raman scattering (SRS) is investigated. All observed Stokes and anti‐Stokes lasing components are identified and ascribed to a single SRS‐promoting vibration mode with ωSRS ≈876 cm−1. With picosecond single‐wavelength pumping at one micrometer the generation of an octave‐spanning Stokes and anti‐Stokes comb is observed.  相似文献   

19.
We present a scheme to realize two‐direction optical switch by a single‐mode optical cavity containing some four‐level atoms. The high switching efficiency can be obtained through low photon loss and large third‐order nonlinear susceptibility of this N‐type atomic system in cavity. Without the microwave source, it can be reduced to a Λ‐type atomic system where a coupling laser is used to realize single intracavity electromagnetically induced transparency (EIT). Namely, the probe field can be transmitted almost totally at resonance. Thus a two‐direction optical switch is operated and the state for forward (backward) direction is set as “open” (“closed”). When microwave source is introduced, dressed splitting of intracavity dark state happens. The probe field is reflected almost completely at resonance and the state of the optical switch at forward and backward directions (transmitted and reflected channels) is shifted as “closed” and “open”, respectively. Moreover, this scheme is much advantageous to realize splitting of intracavity dark state because weak microwave field () induces the coupling between intracavity dark state and one sublevel of ground state. While a strong pump laser () which couples the intracavity dark state with an excited level is applied to realize this splitting in ref. [Phys. Rev. A 85 013814 (2012)].  相似文献   

20.
Spectral line‐by‐line shaping is a key enabler towards optical arbitrary waveform generation, which promises broad impact both in optical science and technology. In this paper, generation of optical and microwave arbitrary waveforms using the spectral line‐by‐line shaping technique is reviewed. Compared to conventional pulse shaping, significant new physics arises in the line‐by‐line regime, where the shaped pulse fields generated from one laser pulse now overlap with those generated from adjacent pulses. This leads to coherent interference effects related to the properties of optical frequency combs which serve as the source in these experiments. We explore such effects in a series of experiments using several different high‐repetition‐rate optical combs, including harmonically mode‐locked lasers and continuous‐wave lasers that are externally phase modulated either with or without the help of an optical cavity. As an application of line‐by‐line pulse shaping, we describe generation of microwave electrical arbitrary waveforms that can be reprogrammed at rates approaching 10 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号