首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
新型高准确度光纤光栅压力传感系统   总被引:12,自引:11,他引:1  
胡志新  朱军  张陵 《光子学报》2006,35(5):709-711
提出一种使用光纤双布喇格光栅测定压力的测量方法.在外界压力作用下,传感光纤布喇格光栅反射波长的漂移,被转变成在交变力策动下,发生弯曲的等强度悬臂梁调制扫描光栅反射光脉冲间隔的变化.实验结果表明,光纤布喇格光栅反射波长漂移的测量范围为0~3 nm,波长测量的不确定度为1 pm;压力传感器的量程为0~6 MPa时,压力的测量不确定度为0.005 Mpa.  相似文献   

2.
介绍了一种基于双光纤布喇格光栅实现波长解调的高准确度、低成本光纤光栅压力传感器.在外界压力下,传感光纤布喇格光栅的反射波长产生漂移,其漂移量被粘贴在以一定频率上下扫描的等强度悬臂梁上的匹配光纤布喇格光栅调制为系统输出时间脉冲序列的脉冲宽度.实验结果表明:该解调技术的波长测量范围为0~3nm,波长测量的不确定度为1pm,对于量程为0~6MPa的压力传感器其测量的不确定度为0.005MPa.  相似文献   

3.
光纤光栅压力传感器中应力迟滞的消除方法   总被引:7,自引:3,他引:4  
胡志新  朱军  张陵  王宏亮 《光子学报》2006,35(9):1329-1332
提出了一种利用双光纤光栅消除光纤光栅压力传感器中应力迟滞的方法.将两个相同波长的光纤布拉格光栅分别对称粘贴于悬臂梁的上下表面并串接在一起,外压力作用下可实现调谐双光栅布拉格波长差.研究结果表明,该方法可消除弹性元件材料所引起光纤光栅压力传感器的应力迟滞,改善传感器的线性响应特性和重复性,在0~40 MPa的压力范围内,双峰波长差的调谐范围为5.12 nm,是单峰波长调谐范围的2倍,压力调谐双峰波长差的灵敏度可达0.128 nm/MPa,是压力调谐单峰波长灵敏度的2倍.  相似文献   

4.
单光纤光栅波谱展宽温度压力同时区分测量   总被引:10,自引:4,他引:6  
郭团  乔学光  贾振安  孙安  陈长勇 《光学学报》2004,24(10):401-1405
报道了利用单光纤布拉格光栅反射波带宽展宽技术实现温度与压力同时区分测量的新方案。通过聚合物材料将光栅粘接于双孔悬臂梁非均匀应变区 ,在压力作用下悬臂梁带动光栅发生非均匀应变 ,使布拉格反射波波长漂移的同时带宽展宽 ,而温度变化仅引起反射波波长漂移。在 2 0~ 10 0℃和 0~ 7.8N的温度和压力测量范围内 ,温度测量精度± 1.1℃ ,压力测量精度± 0 .18N ,布拉格反射波中心波长漂移量和带宽展宽量随温度和压力的变化呈良好的线性关系 ,线性度均高于 99.6 %。多次测量表明 ,此方案的展宽波形稳定 ,重复性好。  相似文献   

5.
光纤光栅弹簧管压力传感器的压力和温度特性   总被引:14,自引:0,他引:14  
刘云启  郑建成 《光子学报》1998,27(12):1111-1115
本文利用弹簧管对于压力的机械放大作用,将弹簧管与光纤光栅悬臂梁调谐技术相结合,研制了一种新颖的光纤光栅弹簧管压力传感器,大大提高了光纤布喇格光栅对压力测量的灵敏度,压力灵敏度系数可达-1.79×10-4/MPa,比裸光栅提高了两个数量级,在0~12MPa的压力范围内,光纤布喇格光栅中心反射波长的改变与压力成良好的线性关系.同时由于悬臂梁热膨胀效应的影响,光纤光栅的温度灵敏度提高为裸光栅的7倍.  相似文献   

6.
 为了实现单一光纤光栅对压强精确测量,设计了一种温度不敏感的光纤布拉格高压传感器。对该传感器的温度特性及压强响应特性进行研究。给出了该传感器的结构及封装方法。从理论上分析了该传感器的温度去敏原理,推导了该压强传感器的光纤布拉格光栅中心波长与压强的关系,得到了该传感器的压强响应灵敏度的解析表达。通过实验分析传感器的温度特性及压强响应。实验结果表明,在21℃~260.8℃的范围内,实现了温度补偿,平均波长漂移量为0.75 pm/℃,在0~44 MPa的范围内,获得了-0.054 8 nm/MPa的压强响应灵敏度,是裸光纤布拉格光栅压力响应灵敏度的18.27倍。该传感器的压强响应具有很好的线性和重复性,实验值与理论值吻合得很好,该传感器能够通过一只光纤布拉格光栅实现压强的精确测量。  相似文献   

7.
压力与温度双参量传感优化系统的研制   总被引:7,自引:0,他引:7  
研究了一种基于管式弹性应变敏感元件的光纤光栅传感器结构。利用双光纤布拉格光栅(FBG)产生双反射峰.对压力和温度进行了同时区分测量。在压力为0~20MPa,温度为20~150℃的范围内,布拉格反射波长对应压力与温度的变化均呈现良好的线性响应特性,响应灵敏度分别为0.089nm/MPa和0.024nm/C^-。压力温度双参量系数矩阵的实验拟合值与理论计算值之差仅占理论计算值的1.8%。该方法与标准测量方法比较,压力的准确度为0.47%;温度的准确度为0.74%。该方法还较好地削减了压力与温度交叉敏感的影响,按压力与温度测量的最大量限计算,温度对压力交叉影响的误差仅为0.16%。  相似文献   

8.
利用双周期光纤光栅实现应变和温度同时测量   总被引:21,自引:5,他引:16  
提出了一种新颖双周期光纤光栅传感器。在同一段氢载光纤上先后写入长周期光纤光栅、短周期布拉格光纤光栅 ,利用长周期光栅和布拉格光栅对应变和温度敏感性的差异 ,可实现应变和温度的同时测量。实验中采用这种灵敏结构的双周期光栅 ,在 0~ 170 0 με和 2 0℃~ 12 0℃范围内 ,测量精度可达到± 16 με和± 0 8℃。  相似文献   

9.
应用平衡双光纤光栅动态解调技术测量应力的研究   总被引:3,自引:0,他引:3  
励强华  李俊庆  李淳飞 《光学学报》2003,23(10):196-1199
报道了一种基于解调技术使用双光纤光栅测量张力的方法。在外界拉力下一个光纤布拉格光栅反射波长的漂移被转变成从另一个被压电陶瓷片调制的光栅反射的光脉冲间隔的变化。实验表明,当测量一个40N以内的力时,测量精度可达到2.5mN。  相似文献   

10.
港口门式起重机的光纤布喇格光栅负荷传感器将钢索张力转变为对测力传感器的正压力,测力元件采用等应变梁结构,使固定在上下表面的光栅同时受到拉力和压力,以两光栅反射波长位移量的叠加表示钢索受到的载荷。该装置提高了测量灵敏度和线性度,而且抵消了环境温度的干扰。标定数据表明,光纤光栅负荷传感器的误差只有0.70/60,大大优于电应变片3%的精度指标要求。  相似文献   

11.
杨剑  赵勇  倪行洁 《光学学报》2007,27(9):1575-1579
提出了一种新型的光纤布拉格光栅(FBG)水声传感探头结构以及光纤光栅传感信号的自解调方法。利用一对匹配光栅构成推挽结构,实现了传感-解调的合二为一,大大地减小了系统的复杂度;并通过筒状弹性体结构,解决了裸光纤光栅测量水声信号的灵敏度过小的问题,并具有温度补偿作用。仿真与初步实验结果表明,该水听器探头的测量动态范围超过100 dB,在100~200 dB re 1μPa的水声压范围内,测量灵敏度为0.36 nm/Mpa。  相似文献   

12.
带宽调制型单光纤光栅温变无补偿位移传感   总被引:2,自引:0,他引:2  
报道了利用反射谱带宽调制和光强差分探测技术实现单一光纤光栅温变无补偿位移精确测量的新方法。设计了一种结构新颖的曲臂梁位移传感装置,结合光波导理论与材料力学原理分析了光纤光栅在高斯应变作用下光栅反射谱侧向梯度展宽的成因,理论推导了特殊结构梁在外力作用下光栅反射谱带宽/反射光强与压力之间的响应关系。光栅反射谱侧向梯度展宽的同时反射光强线性增加,利用光强差分检测方法消除光源出光抖动的影响,提高了位移测量精度。基于带宽调制的光纤光栅位移传感方法免受温度变化的影响,在-10℃~80℃的温度变化范围内,测量误差小于1.2%,实现了单光纤光栅温变无补偿位移测量。  相似文献   

13.
光强检测型光纤光栅温变不敏感动态压力传感研究   总被引:2,自引:0,他引:2  
报道了基于光纤光栅反射谱带宽调制和光强差分检测技术实现单一光纤光栅温变不敏感动态压力传感的新方法。设计了一种结构新颖的双孔梁压力传感装置,依据双孔梁有限元受力分析将光纤光栅准确定位于线性梯度应变区,压力作用下光纤光栅反射谱对称展宽,反射光强线性正比于压力变化。基于光波导理论和材料力学原理推导了线性梯度应变场作用下光栅反射谱带宽、反射光强与压力之间的响应关系。利用光强差分检测技术取代传统波长解调方法,简化解调过程的同时传感系统免受温变影响。实验表明,在-10~80℃的温度变化范围内,系统测量误差小于总量程(120kPa)的1.8%,动态响应速度约80Hz,重复测量系统输出稳定,具有较好的应用价值。  相似文献   

14.
平面圆形膜片式光纤布拉格光栅温度补偿压强传感   总被引:2,自引:0,他引:2  
报道了利用光纤布拉格光栅反射波谱带宽展宽技术实现温度补偿的压强传感新方案。结合平面圆形膜片应变调谐的特点,采用膜盒式结构,将光纤光栅中心对准平面圆形膜片零应变半径并沿径向粘贴,利用反射波谱带宽对应变敏感而对温度不敏感的特性解调压强,成功地实现了温度补偿的压强传感测量。基于光谱分析仪0.05nm的光谱分辨力,实验测得带宽随压强响应灵敏度为0.34nm/MPa,压强精度为±0.15MPa,压强测量范围为0~7.5MPa。实验结果与理论分析基本一致。  相似文献   

15.
Guo T  Zhao Q  Zhang H  Zhang C  Huang G  Xue L  Dong X 《Optics letters》2006,31(15):2269-2271
Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.  相似文献   

16.
采用WDM技术的光纤Bragg光栅传感网络   总被引:7,自引:2,他引:5  
采用绝对测量原理的波长调制技术,光纤Bragg光栅可组成并行、串行和阵列WDM拓扑结构.分析表明,光纤Bragg光栅网络的工作原理类似于一个多宽带平面镜.利用光谱仪可测量上述光纤Bragg光栅网络的反射谱,其中,光源是宽带为~40nm的掺饵光纤放大器.当网络中的光纤Bragg光栅受扰动后,受扰光栅的反射谱发生相应的变化,即Bragg波长发生相应的偏移.结果表明,当事先确定了光纤光栅的波长调制范围,反射的峰值波长能反应光纤光栅传感网络的信息.值得注意的是~3nm的波长调制范围可满足~100℃和~2000με的参量测量.  相似文献   

17.
鉴于钛合金材料具有低弹性模量、受温度影响小等特性,设计制作了一种以钛合金管作为光纤Bragg光栅应变增敏衬底元件的高压压力传感器件.通过与电阻应变计实时监控的对比,从实验上研究了光纤Bragg光栅的中心波长偏移对调谐压强的响应.结果表明:这种增敏设计,具有良好的线性响应和可重复性,且与理论推导结果吻合较好.增敏后对压力的响应灵敏度可达0.034 nm/MPa,测压量程可达0~40 MPa,甚至更宽.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号