首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
100 keV H+ scattering has been used to investigate the structure of the methylthiolate/Au(111) interface in the Au(111)(√3 × √3)R30° phase. Adsorption of the thiolate onto the clean Au(111) surface leads to a large drop in the scattered ion yield due to the lifting of the clean surface ‘herring-bone’ reconstruction, but the thiolate-covered surface shows an ion yield higher than that of an unreconstructed Au(111) surface, providing direct evidence of a significant number of Au atoms that are displaced from their bulk-terminated positions at the buried interface. Simulations for two different Au adatoms models at the interface, namely, the Au-adatom-monothiolate (AAM) and Au-adatom-dithiolate (AAD) models, show significant sensitivity to the exact values of interlayer spacings and atomic vibrational amplitudes, but the comparison with experimental results appears to favour the AAD model with 0.17 ML Au adatoms in bridging sites at the interface.  相似文献   

2.
Hydrogen atoms on solid surfaces were measured directly by elastic recoil detection analysis (ERDA) using medium energy (100–150 keV) Ne+ ions with an excellent sensitivity of (~ 1 × 1012 H/cm2) without any absorber foils and time-of-flight techniques. An electrostatic toroidal analyzer acquired H+ ions with energy around 11 keV recoiled from Si(111)-1 × 1-H surfaces. The H+ fraction strongly depends upon emerging angle and takes a value more than 50% at the angle below 70° and a saturated value of 17% at the angle above 80° with respect to surface normal. We detected H atoms on the reduced TiO2(110) exposed to water molecules at room temperature (2 L) and estimated the absolute amount of H to be ~ 2.0 × 1014 H/cm2 corresponding to ~ 38% (~ 0.38 ML) of the bridging oxygen atoms.  相似文献   

3.
The interactions between low energy He+ ions and a series of transition metal surfaces have been studied using co-axial impact collision ion scattering spectroscopy (CAICISS). Experimental data were collected from the Ni(110), Cu(100), Pd(111), Pt(111) and Au(111) surfaces using ion beams with primary energies between 1.5 keV and 4.0 keV. The shadow cone radii deduced from the experimental surface peak positions were found to closely match theoretical predictions. Data analysis was performed using both the FAN and Kalypso simulation codes, revealing a consistent requirement for a reduction of 0.252 in the screening length correction in the Molière approximation within the Thomas–Fermi (TFM) interaction potential. The adjustments of the screening length in the TFM potential, predicted by O'Connor, and the uncorrected Ziegler–Biersack–Littmark (ZBL) potential both yielded inaccurate results for all of the surfaces and incident energies studied. We also provide evidence that, despite their different computational methodologies, the FAN and Kalypso simulation codes generate similar results given identical input parameters for the analysis of 180° backscattering spectra.  相似文献   

4.
Colloidal suspensions of hematite in contact with aqueous solutions of 50 mM alkali metal chloride electrolytes (NaCl, KCl, RbCl, CsCl) were investigated by cryogenic X-ray photoelectron spectroscopy (XPS) and electrophoretic mobility. Suspension pH values were varied from 2 to 11 in order to evaluate effects of positively- and negatively-charged hematite surfaces. XPS revealed coexisting cations and chloride ions both below and above the point of zero charge. Concentration profiles of adsorbed cations point to a Hofmeister series in the order of Na+ > K+ > Rb+  Cs+. Binding energies of photoelectrons emitted from electrolyte ions increased with pH at roughly 0.04 eV per pH unit. This shift was attributed to variations in the surface electric potential of hematite. This effect, compounded by rises in aliphatic carbon signals with pH, called for referencing of all spectra to the 530.0 eV oxide component of the hematite O1s spectrum. This departure from the traditional use of the external C 1s 285.0 eV peak is hereby proposed for cryogenic XPS studies of interfacial reactions involving hematite.  相似文献   

5.
Fast atoms with energies from 300 eV up to 1.7 keV are scattered under a grazing angle of incidence from a clean and flat Ni(1 1 0) surface. For scattering under ”axial surface channeling” conditions, we observe – as reported recently for insulator and semiconductor surfaces – defined diffraction patterns in the angular intensity distributions for scattered fast 3He and 4He atoms. We have investigated the domain of scattering conditions where decoherence phenomena are sufficiently small in order to observe for metal targets quantum scattering of fast atomic projectiles. As a consequence, fast atom diffraction appears to be a general technique with a wide range of applicability in surface science.  相似文献   

6.
《Solid State Ionics》2006,177(11-12):971-977
In the present study X-ray Photoelectron Spectroscopy (XPS) combined with in situ electrochemical and Kelvin probe measurements was used in order to get a deeper insight on the mechanism of the cation transport through NaY zeolite and the charge transfer through the Au electrode/zeolite interface. It is shown that by imposing a potential gradient across the NaY powder which is sandwiched between two electrodes, Na+ ions can be electrically transferred to or from the Au working electrode area, following the direction of the applied potential between the two electrodes. Two peaks corresponding to sodium species were detected by means of in situ XPS investigation during potential application. The first peak of Na1s photoelectrons with binding energy at 1072.2 ± 0.2 eV is attributed to Na adsorbed on the grounded Au electrode with its coverage remaining unchanged upon potential imposition. The second peak is directly associated with Na present in the zeolite and upon potential application its binding energy varies proportionally with the variation of the surface potential measured by Kelvin probe. Upon varying the potential from − 4 to + 4 V between the working and counter electrode, the Na+ concentration decreases by ca30% at the Au/zeolite interface. However the invariant amount of Na on the Au electrode under vacuum shows that the variation in Na+ concentration is not due to ionic transfer onto the Au surface but instead Na+ accumulation can be assumed at the Au/zeolite interface. On the other hand, current or potential application under O2 atmosphere promotes the electrocatalytic reaction of Na+ towards the formation of Na2O on the Au electrode surface.  相似文献   

7.
Zhou-jun Wang  Qiang Fu  Zhen Wang  Xinhe Bao 《Surface science》2012,606(15-16):1313-1322
The nucleation and thermal stability of Au, Ni, and Au–Ni nanoclusters on 6H-SiC(0001) carbon nanomesh as well as the interaction between Au–Ni bimetallic clusters and reactive gases have been studied by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Both Au and Ni atoms grow as three-dimensional (3D) clusters. Annealing the Au/carbon nanomesh surface up to 1150 °C leads to complete desorption of the Au clusters, while interfacial reaction occurs between Ni clusters and the substrate surface when the Ni clusters are subjected to the same annealing process. The nucleation of Au–Ni clusters depends critically on the deposition sequence. Au atoms preferentially nucleate on the existing Ni clusters, leading to the formation of bimetallic clusters with Au enriched on the surface. If the deposition sequence is reversed, a part of Ni atoms nucleate between the Au clusters. The thermal stability of the Au–Ni clusters resembles that of the Ni/carbon nanomesh surface, irrespective of the deposition sequence. XPS characterization reveals that Ni atoms in Au–Ni bimetallic clusters are oxidized upon exposure to 5.0 × 10? 7 mbar O2 for 5 min at room temperature while negligible structure change can be detected when the bimetallic clusters are exposed to CO gas under the similar conditions.  相似文献   

8.
Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100–700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200–2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.  相似文献   

9.
10.
The irradiation effects of 2 MeV He+ and Ar+ ions on the film structure of the C–Si system were investigated with RHEED and XPS. The formation of SiC phase and/or the growth of epitaxial SiC were possible by He+ irradiation for the carbon films up to 0.7 nm in thickness, which was thinner than that by Ar+ irradiation. The He+ irradiation could not grow the turbostratic graphite which could be grown by Ar+ irradiation. The mechanism of the formation and the epitaxial growth of SiC by ion irradiation was discussed from the view point of the energy transfer from the irradiated ions.  相似文献   

11.
Nanocrystalline cerium oxide (CeO2) thin films were deposited onto the fluorine doped tin oxide coated glass substrates using methanolic solution of cerium nitrate hexahydrate precursor by a simple spray pyrolysis technique. Thermal analysis of the precursor salt showed the onset of crystallization of CeO2 at 300 °C. Therefore, cerium dioxide thin films were prepared at different deposition temperatures from 300 to 450 °C. Films were transparent (T ~ 80%), polycrystalline with cubic fluorite crystal structure and having band gap energy (Eg) in the range of 3.04–3.6 eV. The different morphological features of the film obtained at various deposition temperatures had pronounced effect on the ion storage capacity (ISC) and electrochemical stability. The larger film thickness coupled with adequate degree of porosity of CeO2 films prepared at 400 °C showed higher ion storage capacity of 20.6 mC cm? 2 in 0.5 M LiClO4 + PC electrolyte. Such films were also electrochemically more stable than the other studied samples. The Ce4+/Ce3+ intervalancy charge transfer mechanism during the bleaching–lithiation of CeO2 film was directly evidenced from X-ray photoelectron spectroscopy. The optically passive behavior of the CeO2 film (prepared at 400 °C) is affirmed by its negligible transmission modulation upon Li+ ion insertion/extraction, irrespective of the extent of Li+ ion intercalation. The coloration efficiency of spray deposited tungsten oxide (WO3) thin film is found to enhance from 47 to 53 cm2 C? 1 when CeO2 is coupled with WO3 as a counter electrode in electrochromic device. Hence, CeO2 can be a good candidate for optically passive counter electrode as an ion storage layer.  相似文献   

12.
Photovoltaic (PV) properties of bismuth ferrite (BFO) and barium titanate (BTO) multilayered ferroelectric BFO/BTO/BFO/BTO thin film structure deposited on Pt/Ti/SiO2/Si substrates using chemical solution deposition technique are presented. X-ray diffraction analysis confirms pure phase polycrystalline nature of deposited perovskite multilayered structures. Simultaneously both distorted rhombohedral (R3c) and tetragonal phases (P4mm) of the respective BFO and BTO components are also well retained. The ferroelectric sandwiched structures grown on fused quartz substrates exhibit high optical transmittance (~70%) with an energy band gap 2.62 eV. Current–voltage characteristics and PV response of multilayered structures is determined in metal-ferroelectric-metal (MFM) capacitor configuration. Considerably low magnitude of dark current density 1.53×10−7 A at applied bias of 5 V establish the resistive nature of semi-transparent multilayered structure. Enhanced PV response with 40 nm thin semitransparent Au as top electrode is observed under solid-state violet laser illumination (λ – 405 nm, 160 mW/cm2). The short circuit current density and open circuit voltage are measured to be 12.65 µA/cm2 and 1.43 V respectively with a high retentivity. The results obtained are highly encouraging for employing artificial multilayered engineering to improve PV characteristics.  相似文献   

13.
The interaction of S2 with Ag(111) under ultra-high vacuum conditions has been investigated by medium energy ion scattering (MEIS). 100 keV He+ MEIS measurements provide a direct confirmation of a previous report, based on thermal desorption, that the growth of multilayer films of Ag2S occurs through a continuous corrosion process. These films show a commensurate (√7 × √7)R19° unit mesh in low energy electron diffraction, consistent with the epitaxial growth of (111) layers of the high-temperature F-cubic phase of Ag2S. The substantial range of co-existing film thicknesses found indicates that the growth must be in the form of variable-thickness islands. The use of 100 keV H+ incident ions leads to a very rapid decrease in the sulphide film thickness with increasing exposure that we attribute to an unusual chemical leaching, with implanted H atoms interacting with S atoms and desorption of H2S from the surface.  相似文献   

14.
Zinc oxide (ZnO) nanocrystallites with different Co-doping levels were successfully synthesized by a simple one-step solution route at low temperature (95 °C) in this study. The structure and morphology of the samples thus obtained were characterized by XRD, EDS, XPS and FESEM. Results show that cobalt ions, in the oxidation state of Co2+, replace Zn2+ ions in the ZnO lattice without changing its wurtzite structure. The dopant content varies from 0.59% to 5.39%, based on Co-doping levels. The pure ZnO particles exhibit well-defined 3D flower-like morphology with an average size of 550 nm, while the particles obtained after Co-doping are mostly cauliflower-like nanoclusters with an average size of 120 nm. Both the flower-like pure ZnO and the cauliflower-like Co:ZnO nanoclusters are composed of densely arrayed nanorods. The optical properties of the ZnO nanocrystallites following Co-doping were also investigated by UV–Visible absorption and Photoluminescence spectra. Our results indicate that Co-doping can change the energy-band structure and effectively adjust the luminescence properties of ZnO nanocrystallites.  相似文献   

15.
The interaction between Au nano-particles and oxide supports is recently discussed in terms of the catalytic activities. This paper reports the electronic charge transfer between Au nano-particles and TiO2-terminated SrTiO3(0 0 1) substrate, which is compared with that for stoichiometric(S)-, pseudo-stoichiometric(S1)- and reduced(R)-TiO2(1 1 0) supports. We observed the photoelectron spectra of Au 4f, O 2s, Ti 3p, and Sr 4p lines and also measured the work functions for Au/oxides supports using synchrotron-radiation light. As the results, all the O 2s, Ti 3p, and Sr 4p lines for Au/SrTiO3(0 0 1) show lower binding energy shifts in a quite same manner and abrupt increase in the work function is seen in an initial stage. This clearly evidences an electronic charge transfer from the substrate to Au probably due to a much larger work function of Au than SrTiO3(0 0 1), which leads to an upward band bending (0.3 eV) just like a Schottky contact. Electronic charge transfers also take place at Au/S- and Au/S1-TiO2(1 1 0) and Au/R-TiO2(1 1 0) interfaces, where electrons are transferred from Au to S- and S1-TiO2 and from R-TiO2 to Au, as predicted by ab initio calculations.  相似文献   

16.
Crystalline sucrose irradiated with C and Si ions is investigated with EPR and UV spectroscopy. Samples are treated at different doses of radiation in the region 20–300 Gy and linear energy transfer (LET) values of 39.6, 49 and 58 keV μm?1 for C ions and 60 keV μm?1 for Si ions. All samples exhibit identical EPR spectra due to radiation-induced stable sucrose radicals. At given constant LET the EPR signal responses are linear to the absorbed doses of Si and C ions. Water solutions of irradiated sucrose exhibit UV absorption maximum at 267 nm due to the product of radical recombination. The intensity of this band is stronger at irradiation with Si than with C ions. UV absorption is more sensitive to heavy-ion species irradiation than the EPR signals.  相似文献   

17.
As grown ZnO:Si nanocomposites of different compositional ratios were fabricated by thermal evaporation techniques. These films were subjected to post-deposition annealing under high vacuum at a temperature of 250 °C for 90 min. The photoluminescence (PL) spectra of annealed samples have shown marked improvements both in terms of intensity and broadening. Structural and Raman analyses show formation of a Zn–Si–O shell around ZnO nanoclusters wherein on heating Zn2SiO4 compound forms resulting in huge UV, orange and red peaks at 310, 570 and 640 nm in PL. The new emissions due to Zn2SiO4 completes white light spectrum. The study not only suggests that 1:2 ratio is the best suited for material manipulation but also shows process at the interface of ZnO nanoclusters and silicon matrix leads to new PL emissions.  相似文献   

18.
《Solid State Ionics》2006,177(3-4):403-410
Comparative study of reactivity of nano- and micro-sized alumina and nickel oxide, obtained by the electrical explosion of metal wires in oxidizing atmosphere, was carried out for the reactions NiO + MoO3, NiO + Al2O3, and Al2O3 + Bi2O3 by coupled anneals of ceramics, measurements of the conductivity of individual oxides and raw oxide mixtures, X-ray diffraction and differential thermal analysis. The total conductivity of nano-structured oxides was found lower than that of micro-structured ceramics. Mixing bismuth oxide with nano-structured alumina leads to stabilization of the low temperature polymorph α-Bi2O3 up to 780 °C. The diffusion permeability of NiMoO4 layer grown at the surface of NiO ceramics, having submicron grains, was found 2 times lower if compared to NiMoO4 grown at micro-sized NiO ceramics. NiO and Al2O3 nano-powders preserve the high reactivity even when heated up to 1000 °C. The results are discussed in terms of size effects on the solid state reactivity of oxides.  相似文献   

19.
Yinghui Zhou  Jing Zhou 《Surface science》2012,606(7-8):749-753
Low coverage of Ti was deposited on the well-ordered CeOx(111) (1.5 < x < 2) thin films grown on Ru(0001) by physical vapor deposition at room temperature. The structure and interaction of Ti/ceria interfaces were investigated with X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) techniques under ultrahigh vacuum conditions. XPS data indicate that the deposition of Ti on both oxidized and reduced ceria surfaces causes the partial reduction of Ce from + 4 to + 3 state. Ti is formally in the + 4 state. STM data show the formation of small atomic-like titania features at 300 K, which coalesce to form chain structures upon heating. It is demonstrated in the study that the deposition of Ti can form mixed metal oxides at the interface and modify both electronic and structural properties of the ceria support. The structural study of Ti/ceria interfaces can be a key for understanding the higher catalytic activity of the Ti–CeOx mixed oxide catalysts as compared with the individual pure oxides.  相似文献   

20.
Tungsten oxide (WO3) thin films were prepared by an electron beam deposition technique. Films were deposited onto fluorine-doped tin oxide (FTO)-coated glass substrates maintained at 523 K. The as-deposited films were found to be amorphous and crystallized after annealing at 673 K. The electrochromic and optical properties, structure, and morphology are strongly dependent on the annealing conditions. Cyclic voltammetry (C-V) was carried out in the potential range −1 to +1 V. Before and after colouration, the films were characterized by measuring transmittance and reflectance. The colouration efficiencies at 630 nm are about 39.4 cm2 C−1 and 122.2 cm2 C−1 for amorphous and crystalline films, respectively. An investigation of self-bleaching for the coloured film revealed that the film fades gradually over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号