首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.  相似文献   

2.
Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 × 10−6m2s−1for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times.  相似文献   

3.
Xenon porometry is a novel method used for characterizing porous materials by the (129)Xe nuclear magnetic resonance of xenon gas. With the method, the diffusion of gas is slowed down by immersing the material in a medium, which can be in liquid or solid state during measurements. Because of slow diffusion, the signal of a xenon atom is characteristic of the properties of only one pore, and the composite signal of all atoms represents the distribution of properties. The method is especially applicable for determining pore size distribution because the chemical shifts of two different xenon signals (one from liquid and the other from gas pockets in solid) are dependent on pore size. Therefore, the shapes of these signals represent pore size distribution function. In addition, the porosity of the material can be determined by comparing the intensities of two signals. This article focuses on describing xenon signals observed from gas pockets in a solid medium, which has turned out to be most convenient for pore size determination.  相似文献   

4.
We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.  相似文献   

5.
Murahara M  Sato N  Ikadai A 《Optics letters》2005,30(24):3416-3418
We developed a new method for making a waterproof coating by photooxidation of silicone oil. The silicone oil was spin coated onto the surfaces of optical elements, i.e., a plastic lens, a laser mirror, and a nonlinear optical crystal, and then irradiated with a xenon excimer lamp in air, which transformed the organic silicone oil into an amorphous glass film. This technique has enabled an optical thin film to transmit ultraviolet rays of wavelengths below 200 nm and to exhibit the characteristics of homogeneity, high density, and resistance to environmental effects and to corrosion by water, and a Mohs scale value of 5.  相似文献   

6.
A high-pressure technique is introduced which allows a continuous variation of the inclusion size in liquid crystal colloids. We use a nematic liquid crystal host into which micrometer-sized gas bubbles are injected. By applying hydrostatic pressures, the diameter of these gas bubbles can be continuously decreased via compression and absorption of gas into the host liquid crystal, so that the director configurations around a single bubble can be investigated as a function of the bubble size. The theoretically predicted transition from a hyperbolic hedgehog to a Saturn-ring configuration, on reduction of the particle size below a certain threshold, is confirmed to occur at the radius of a few micrometers.  相似文献   

7.
A new technique to uniformly align liquid crystal molecules is presented. The technique is based on producing an anisotropic surface on the glass substrate coated with photo-polymers by photo-polymerization of linear polarized UV-light. The orientation of liquid crystal molecules is governed by the direction of the polarized vector of UV-light. Using this method, we have studied the photo-polymer PSi-CM aligning LC 6710A molecules. The liquid crystal microscopic texture between crossed polarizers, optical retardation from liquid crystal layers and electro-optical properties of twisted nematic liquid crystal display cell are obtained, which was prepared with one side -photo-alignment and the other side-rebbed substrate.  相似文献   

8.
We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol.  相似文献   

9.
Experiments based on noble elements such as gaseous or liquid argon or xenon utilize the ionization and scintillation properties of the target materials to detect radiation-induced recoils. A requirement for high light and charge yields is to reduce electronegative impurities well below the ppb (parts per billion, 1 ppb \(=1\times 10^{-9}\) mol/mol) level. To achieve this, the target material is continuously circulated in the gas phase through a purifier and returned to the detector. Additionally, the low backgrounds necessary dictate low-Rn-emanation rates from all components that contact the gas. Since commercial pumps often introduce electronegative impurities from lubricants on internal components or through small air leaks, and are not designed to meet the radiopurity requirements, custom-built pumps are an advantageous alternative. A new pump has been developed in Muenster in cooperation with the nEXO group at Stanford University and the nEXO/XENON group at Rensselaer Polytechnic Institute based on a magnetically-coupled piston in a hermetically sealed low-Rn-emanating vessel. This pump delivers high performance for noble gases, reaching more than 210 standard liters per minute (slpm) with argon and more than 170 slpm with xenon while maintaining a compression of up to 1.9 bar, demonstrating its capability for noble gas detectors and other applications requiring high standards of gas purity.  相似文献   

10.
Adsorbed xenon on evaporated films of nickel and platinum has been analysed by Auger electron spectroscopy. The primary electron beam is shown to cause some surface heating resulting in a displacement of the isotherms. This temperature effect is the same for both metals and is due to the limiting thermal conductivity of the glass substrate. A further effect, the electron induced desorption (EID) of xenon is evidenced by a distortion of the isotherms at low equilibrium gas pressures. This effect is more clearly observed on platinum because the coverage is higher than on nickel. The EID cross-section for xenon on both metals is found to be 1 × 10?17cm2. The attenuation of the metal Auger peaks by the xenon overlayer is found to be less for platinum than for nickel. This difference is attributed to a lower packing density of xenon on the platinum surface.  相似文献   

11.
气体轴承是回热式热机的一项关键技术,它是利用气体代替润滑油作为润滑剂,在轴与轴承套之间构成气膜,是避免运动面与静止面直接接触的较为理想支撑元件。将间隙密封与气体轴承相结合,可以在实现密封的同时消除接触磨损。本文利用ANSYS Fluent对具有77 kW(声功)设计输出能力的活塞进行其气体轴承与间隙密封耦合特性的数值模拟与分析,指导该新型气路结构的优化设计,并验证其在大功率自由活塞斯特林发动机中应用的可行性。  相似文献   

12.
Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.  相似文献   

13.
The enhanced spin polarization produced by optical pumping of gaseous rubidium/xenon samples has made possible a number of recent experiments in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI). Here we report MRI of laser-polarized xenon in the solid phase at low temperature. Due to the high xenon density in the solid phase and the enhanced spin polarization, it is possible to achieve high intensity and spatial resolution of the image. Signals were observed from xenon films solidified onto the glass container walls and not from an enclosed chili pepper.  相似文献   

14.
In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.  相似文献   

15.
提出了一种将声光可调滤光器技术应用于气体浓度测量的红外光谱系统。该系统以氙灯作为光源,TeO2晶体作为声光介质的色散元件,InGaAs光电二极管阵列作为多通道检测器,利用光纤探测和传输光信号,由计算机处理数据和显示结果。通过声光调制将宽带光变为单色光,通过超声射频的变化实现光谱扫描,可对不同气体进行快速测量,无机械调谐机构,结构简单。通过对甲烷气体的实验表明,该系统的有效光谱测量范围为900~1900nm,光谱分辨率为60nm,可用于对有害气体的在线检测。  相似文献   

16.
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter.  相似文献   

17.
黄献烈  赖虹凯 《光学学报》1997,17(4):456-460
提出一种位相调制的实时联合变换相关器。它采用液晶显示屏作为输入器件,用液晶光阀记录和显示联合功率谱。利用液晶显示屏上的光栅状结构的衍射级,提高光能的利用率,并充分利用液晶光阀的有效使用面积。采用成像透镜放大各衍射级的联合频谱,适应液晶光阀较低的分辨率要求。在相关器的光路中插入两块倾斜的平行平面玻璃板,以改变各衍射级的参考图像和目标图像之间的位相差。这种方法可产生比传统的实时联合变换相关器更好的输出相关性能。实验结果证实了该系统设计及性能分析的正确性  相似文献   

18.
In recent years, optically pumped xenon-129 has received a great deal of attention as a contrast agent in gas-phase imaging. This report is about the other NMR active xenon isotope (i.e., xenon-131, S = 32) which exhibits distinctive features for imaging applications in material sciences that are not obtainable from xenon-129 (S = (1/2)). The spin dynamics of xenon-131 in gas and liquid phases is largely determined by quadrupolar interactions which depend strongly on the surface of the surrounding materials. This leads to a surface dependent dispersion of relaxation rates, which can be substantial for this isotope. The dephasing of the coherence due to quadrupolar interactions may be used to yield surface specific contrast for imaging. Although optical pumping is not practical for this isotope because of its fast quadrupolar relaxation, a high spin density of liquid xenon close to the critical point (289 K) overcomes the sensitivity problems of xenon-131. We report the first xenon-131 magnetic resonance images and have tested this technique on various meso-porous aerogels as host structures. Aerogels of different densities and changing levels of hydration can clearly be distinguished from the images obtained.  相似文献   

19.
Higher engine efficiency and ever stringent pollutant emission regulations are considered as the most important challenges for today's automotive industry. Fast evaporation and combustion technique has caused unprecedented attention due to its potential to solve both of the above challenges. Flash boiling, which features a two-phase flow that constantly generates vapor bubbles inside the liquid spray is ideal to achieve fast evaporation and combustion inside direct-injection (DI) gasoline engines. In this study, three spray conditions, including liquid, transitional flash boiling and flare flash boiling spray were studied for comparison under cold start condition in a spark-ignition direct-injection (SIDI) optical gasoline engine. Optical access into the combustion chamber includes a quartz linear and a quartz insert on the piston. In separate experiments, we recorded the crank angle resolved spray morphology using laser scattering technique, and distribution of fuel before ignition employing laser induced fluorescence technology, as well as time-resolved color images of flame with high-speed camera. The spray morphology during the intake stroke shows stronger plume-plume and plume-air interaction under flash boiling condition, as well as smaller penetration. Then around the end of compression (before ignition), the fuel distribution is also shown to be more homogeneous with less cyclic variation under flash boiling. Finally, from the color images of the flame, it was found that with the increase of superheat degree, the diffusion rate of blue flame (generated by excited molecules) is higher, which is considered to be related with the larger fractal dimension of the flame front. Also, the combustion is more complete with less yellow flame under flash boiling.  相似文献   

20.
InP film samples are prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which are atomized with compressed air as carrier gas onto glass substrates at 500°C with different thicknesses of the films. The structural properties of the samples are determined by x-ray diffraction (XRD). It is found that the crystal structure of the InP films is polycrystalline hexagonal. The orientations of all the obtained films are along the c-axis perpendicular to the substrate. The electrical measurements of the samples are obtained by dc four-probe technique on rectangular-shape samples. The effects of temperature on the electrical properties of the InP films are studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号