首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We demonstrate single-frequency operation of a cw quasi-phase-matched singly resonant optical parametric oscillator (SRO). We obtained widely tunable output from 1.66 to 1.99 mum (signal) and from 2.29 to 2.96 mum (idler) by employing a periodically poled lithium niobate multigrating chip. Using a single-frequency miniature Nd:YAG ring laser as a pump source results in SRO output with high spectral purity and frequency stability(<10 MHz/min), which can be continuously tuned over 2 GHz without mode hops. We obtain a minimum SRO threshold of 260mW by resonating the pump wave in the SRO cavity.  相似文献   

2.
Femtosecond parametric generation in ZnGeP(2)   总被引:1,自引:0,他引:1  
We report traveling-wave optical parametric generation in short (2-mm) ZnGeP(2) samples with reduced anomalous absorption, using femtosecond pump pulses near 2 mum . The signal and the idler waves generated could be tuned from 2.5 to 10 mum , and they extend the tunability of the beta-barium borate optical parametric generator used as a pump source to the mid-infrared. At a single-pass internal conversion efficiency of 2.5% we estimate pulse durations of 75 fs (signal near 3 mum) and 200 fs (idler near 6 mum).  相似文献   

3.
We report on what is believed to be the first singly resonant cw optical parametric oscillator (SRO) that is directly pumped by a diode laser. The SRO consists of a 38-mm-long periodically poled LiNbO(3) crystal in a four-mirror signal-resonant ring cavity. Pumped by 2.5 W of 925-nm diode-laser radiation, the SRO generates 480 mW of single-frequency idler radiation at 2.1mum . The wavelengths of the signal and the idler output are tuned in the ranges of 1.55 to 1.70mum and 2.03 to 2.29mum, respectively, by tuning the wavelength of the diode laser from 924.0 to 925.4 nm.  相似文献   

4.
We report the use of a smoothly tunable, single-frequency continuous-wave optical parametric oscillator (OPO) for high-resolution spectroscopy. The OPO is based on potassium titanyl phosphate and is resonant for both signal and idler fields, resulting in a device with a very low pump power threshold of 30 mW. The frequency-selective nature of the doubly resonant oscillator ensures that the signal and idler modes can be tuned across the entire phase-match bandwidth without the need for additional intracavity frequency-selective components. Smooth frequency tuning of the output of the OPO is obtained by tuning of the pump laser. To demonstrate the practicality of our OPO we recorded the absorption spectrum of cesium vapor in the 1-microm spectral region.  相似文献   

5.
Burr KC  Tang CL  Arbore MA  Fejer MM 《Optics letters》1997,22(19):1458-1460
We describe a high-repetition-rate femtosecond optical parametric oscillator (OPO) that was broadly tunable in the mid infrared. The all-solid-state-pumped OPO was based on quasi-phase matching in periodically poled lithium niobate. The idler was tunable from approximately 1.7 mum to beyond 5.4 mum, with maximum average power levels greater than 200 mW and more than 20 mW of average power at 5.4 mum. We used interferometric autocorrelation to characterize the mid-infrared idler pulses, which typically had durations of 125 fs. This OPO had a pumping threshold as low as 65 mW of average pump power, a maximum conversion efficiency of >35% into the near-infrared signal, a slope efficiency for the signal of approximately 60%, and a maximum pump depletion of more than 85%.  相似文献   

6.
Hsu CW  Yang CC 《Optics letters》2001,26(18):1412-1414
Broadband signal and idler generation based on the spectral retracing behavior in noncollinear phase matching of optical parametric generation in periodically poled LiNbO(3) (PPLN) is reported. Using PPLN of 29.5-mum quasi-phase-matching period and a Q-switched Nd:YAG laser as a pump, we obtained a broad signal spectrum from 1.66 to 1.96 mum and corresponding idler wavelengths from 2.328 to 2.963 mum. The experimental results were consistent with theoretical predictions. Circular and elliptical pump beams were also compared.  相似文献   

7.
McEwan KJ 《Optics letters》1998,23(9):667-669
Greater than 2 W of average power was generated in the infrared region by a AgGaS(2) optical parametric oscillator (OPO). A Q -switched mode-locked laser was used to pump the OPO synchronously. Tunability from 1.4 to 1.9mum and a maximum output power of 750 mW at 1.44mum were achieved with a standing-wave cavity. Redesigning the cavity into a ring configuration allowed the depleted pump, signal, and idler beams to be extracted efficiently through separate mirrors. This design generated signal and idler beams of high spatial quality at respective power levels of 1.5 and 620 mW at a pulse repetition rate of 2 kHz.  相似文献   

8.
A new optical parametric oscillator (OPO) for the mid-infrared wavelength region of 3-3.8mum with an idler output power of up to 1.5 W has been developed. The singly resonant OPO is pumped by a single-mode, 10-W, continuous-wave Nd:YAG laser and consists of a bow-tie ring cavity with a fan-out periodically poled lithium niobate crystal and a low-finesse intracavity air-spaced etalon. The single-frequency idler output can be continuously tuned over 24 GHz with 700-mW power by tuning of the pump laser. The tuning was demonstrated by recording of an absorption line of ethane with photoacoustic spectroscopy.  相似文献   

9.
We report a continuous-wave, doubly resonant optical parametric oscillator (OPO) based on the nonlinear material periodically poled KTiOPO(4) and its application to spectroscopy. The OPO, which is pumped by a diode-pumped frequency-doubled Nd:YLF laser at 523 nm, has a low pump-power threshold of 25 mW and can deliver 10 mW of single-frequency output at 1.65 mum for a pump power of 200 mW. The idler wavelength can be temperature tuned at a rate of 0.73 nm/( degrees )C , and smooth tuning of the output frequency over ~3 GHz is achieved by smooth tuning of the pump laser. We demonstrate the practicality of the OPO by recording the absorption spectrum of methane near 1649 nm.  相似文献   

10.
We report on a diode-laser pumped cw optical parametric oscillator (OPO) based on quasi-phase-matched periodically poled lithium tantalate. Pumped by the 2.3-W single-frequency, nearly diffraction-limited 925-nm output of an InGaAs diode master-oscillator power amplifier, the pump and signal resonant OPO generates a single-frequency idler wave with an output of as much as 244 mW. The wavelengths of the signal and idler waves are widely tunable in the range 1.55-2.3mum by use of different poling periods (27.3 to 27.9mum) and by variation of the crystal temperature in the range 70-190 degrees C.  相似文献   

11.
We report what is believed to be the first demonstration of an optical parametric oscillator directly pumped by the 1.55-mum output of an erbium-doped fiber laser. The oscillator, based on periodically poled lithium niobate, produced 8-muJ idler output near 3.8 mum at a 500-Hz repetition rate when it was pumped with 100-muJ 60-ns pulses at 1.55 mum . Temperature tuning of the 50-mm-long PPLN crystal gave signal and idler ranges of 2.55 to 2.7 mum and 3.65 to 3.96 mum , respectively, limited by mirror reflectivity. A signal-tuning range of 40 nm was observed for 13.5 nm of pump tuning with a fixed grating period and temperature. The optical parameter oscillator could be operated at low temperature with no sign of photorefractive damage.  相似文献   

12.
We report a continuous-wave optical parametric oscillator (OPO) based on periodically poled RbTiOAsO(4) (PPRTA). The singly resonant OPO, which is located within a Ti:sapphire laser, has a high-finesse signal cavity and delivers a maximum output power of 270 mW to the nonresonant idler wave at 2.92mum , through a 4.5-mm PPRTA crystal. For room-temperature operation and a crystal with a 30-mu;m grating period, pump tuning over 838-848 nm results in OPO tuning over 1.13-1.27mum (signal) and 2.53-3.26mum (idler), limited by the bandwidth of optical coatings. PPRTA exhibits thermal properties superior to those of periodically poled LiNbO(3) .  相似文献   

13.
Garashi A  Arie A  Skliar A  Rosenman G 《Optics letters》1998,23(22):1739-1741
We report what is to our knowledge the first demonstration of a continuous-wave optical parametric oscillator (OPO) based on periodically poled KTiOPO(4) . The 10-mm-long flux-grown crystal had a quasi-phase-matched period of 9mum . The pump source was a miniature frequency-doubled Nd:YAG laser, and the threshold power of this doubly resonant device was 51 mW. The OPO was operated near room temperature. The signal and the idler wavelengths could be tuned in the range 1037-1093 nm by variation of the crystal temperature (32-38 degrees C) and the cavity length. Unlike in other nonlinear crystals, green-induced infrared absorption was not observed up to the highest pumping intensity of approximately 4.5kW/cm(2) .  相似文献   

14.
The tuning properties for the mid-IR DFG laser based on uniform grating PPLN have been investigated with tunable YDFL and EDFL fundamental lights. Our results show that, for a fixed crystal temperature, the idler tunable range is less than 10 nm when the EDFL is tuned. Although the pump may be allowed to be tuned in its two QPM acceptance bands, the idler tunable range is still narrow for a fixed temperature. By optimizing the crystal temperature, however, the two pump QPM acceptance bands may be overlapped to form one broadband QPM band, which may be used to increase the idler tunable range to 175 nm near 3.4 μm region. The positions of the single signal and the two separate pump QPM acceptance bands can be continuously moved by adjusting the temperature, which may also be used for enhancing the idler tuning range. By tuning the EDFL while adjusting the temperature, a whole combined idler tuning range between 2.98 and 3.78 μm was experimentally obtained with three fixed pump wavelengths of 1.05, 1.08 and 1.11 μm. By tuning the YDFL in the two separate QPM acceptance bands, a tuning range of 690 nm has been demonstrated with only one fixed signal wavelength of 1.58 μm.  相似文献   

15.
利用106μm全固化单频Nd:YVO4激光器抽运由PPLN构建的三共振光学参量振荡器,在光学参量振荡器近简并运转的情况下:信号光和闲置光的波长相差约为200nm,观察到了信号光和闲置光的强度起伏的关联,实测强度差噪声压缩度达04dB.在此基础上,利用温度调谐了信号光和闲置光的波长,在17nm的范围内都观察到信号光和闲置光的强度起伏的关联. 关键词: 准相位匹配 光学参量振荡 强度差噪声压缩  相似文献   

16.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

17.
Yang Wang 《中国物理 B》2022,31(3):34210-034210
We experimentally engineer a high-spectral-purity single-photon source using a single-interferometer-coupled silicon microring. By the reconfiguration of the interferometer, different coupling conditions can be obtained, corresponding to different quality factors for the pump and signal/idler. The ratio between the quality factor of the pump and signal/idler ranges from 0.29 to 2.57. By constructing the signal—idler joint spectral intensity, we intuitively demonstrate the spectral correlation of the signal and idler. As the ratio between the quality factor of the pump and signal/idler increases, the spectral correlation of the signal and idler decreases, i.e., the spectral purity of the signal/idler photons increases. Furthermore, time-integrated second-order correlation of the signal photons is measured, giving a value up to 94.95±3.46%. Such high-spectral-purity photons will improve the visibility of quantum interference and facilitate the development of on-chip quantum information processing.  相似文献   

18.
Generation of dual-wavelength continuous-wave (cw) radiation with independent and arbitrarily tuning, and indefinitely close spacing, using two cw optical parametric oscillators (OPOs) coupled with an anti-resonant ring interferometer is reported. The singly resonant OPOs, based on identical 30-mm-long MgO:sPPLT crystals, are pumped by a single cw laser at 532 nm. Two pairs of signal and idler wavelengths can be independently and arbitrarily tuned, with each signal (idler) pair tuned through degeneracy and beyond. Frequency separation between two distinct resonant signal waves from 7 down to 0.8 THz is demonstrated, and their overlap at 951 nm providing a frequency difference as small as ~220 MHz is shown. The OPOs independently provide a signal (idler) wavelength coverage across 870–1,000 nm (1,040–1,370 nm) and simultaneously generate idler powers of >1 W.  相似文献   

19.
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm.  相似文献   

20.
We demonstrate wide, continuous tuning of the single-frequency idler wave of a cw singly resonant optical parametric oscillator (SRO). The SRO consists of a periodically poled LiNbO(3) crystal for quasi-phase matching in a four-mirror signal-resonant ring cavity. The SRO, excited by 2.25 W of 924-nm radiation from an InGaAs diode laser, generates as much as 200 mW of single-frequency 2.1-mum idler radiation. We tune the idler frequency continuously within a range as large as 56 GHz by changing the wavelength of the diode pump laser. The versatility of this continuously tunable single-frequency infrared source is demonstrated by recording of N(2)O rovibrational absorption lines near 2.1 mum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号