首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this study we have investigated how the probability of ionization of sputtered Si atoms to form negative ions depends on the energy of the atoms. We have determined the ionization probability from experimental SIMS energy distributions using a special experimental technique, which included de-convolution of the energy distribution with an instrumental transmission function, found by separate measurements.We found that the ionization probability increases as a power law ∼E0.677 for particles sputtered with energies of 0-10 eV, then becomes a constant value (within the limits of experimental error) for particles sputtered with energies of 30-100 eV. The energy distributions of Si ions, measured under argon and cesium ion sputtering, confirmed this radical difference between the yields from low and high-energy ions.To explain these results we have considered ionization mechanisms that are different for the low energy atoms (<10 eV) and for the atoms emitted with higher energy (>30 eV).  相似文献   

2.
Angular distribution of Cu and Be atoms sputtered from Cu98 Be2 alloy under 5 Kr+ ion bombardment were measured at different angle of incidences (0, 30, 70 and 80). The sputtered material is collected on a MylarTM foil surrounding the target. The used collector was mounted at different ejection angles and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The SRIM-code program was employed to obtain the sputtering yield of Cu and Be from simulated Cu98 Be2 target. The experiment was combined with simulations and revealed that both of them were in a fairly good agreement. Furthermore, angular distribution of differential sputtering yields of both Cu and Be showed over-cosine tendency.  相似文献   

3.
The EXCYT facility at the INFN-LNS is based on a K-800 superconducting cyclotron delivering stable ion beams on a Target Ion Source (TIS) assembly to produce the required nuclear species, and on a 15 MV Tandem for post-accelerating the radioactive beams. For some ion beams such as for Li, the extraction efficiency from the TIS is higher when obtained by positive ionisation, while the injection into the Tandem is possible only after a charge exchange to obtain negative ions. In this work we present the procedures together with the results of the production of 6,7,8,9Li beams extracted at EXCYT during the last year. The production of the radioactive elements was performed by sending a 13C4+ primary beam of 45 MeV/u on a graphite target. The ionisation of the production species was achieved by a tungsten positive surface ioniser. The Li+ has been extracted from TIS at different energies to cross-check the transmission and the charge exchange efficiency. To perform the conversion from positive to negative ions we employed a Charge Exchange Cell (CEC) containing Cs vapours. The Li beam interacts with the latter in a two-step reaction, thus converting its charge from +1 to –1. The CEC was already characterised during off-line tests; the results obtained at EXCYT confirmed both the isotopic shift effect and the efficiency values at several given extraction energies. Future improvements of the TIS and the CEC are discussed.  相似文献   

4.
After a brief outline of the present sputtering theory for a random solid, recent results of the sputtering yieldS for polycrystalline targets are discussed, in particular in view of the influence of the projectile mass and the bombarding angle. The angle dependence ofS at low bombarding energies, and results on the angular distribution of sputtered particles for oblique ion incidence point out necessary modifications of present sputtering theories with respect to the anisotropy of the collision cascades in the solid and the influence of the target surface. The energy distribution of the neutral particles ejected along the target normals is related to the theoretically predictedE ?2-distribution of low energy recoils in the Recent mass spectrometric studies of postionized sputtered neutrals are discussed in view of the formation of sputtered molecules and the application of sputtered neutral mass spectroscopy for surface analysis. Finally, the paper deals with ion-induced surface effects on non-elementary sputtering targets, and the protracted removal of foreign atoms from a matrix.  相似文献   

5.
This paper reports preliminary results obtained on an experimental apparatus dedicated to the study of angular resolved energy distribution of particles emitted from a sputtered target. Secondary ions emitted during the bombardment of a silicon target by xenon ions at a primary energy of 10keV have been studied. In its low energy part the distribution reaches a maximum around 8eV, and then decreases according to an E –1 law. In the range 200eV to 1000eV, a second maximum appears whose height depends on the emission angle. Apart from this range, the angular distributions have a cosine square-like shape. On the contrary, the angular distribution of ions with energy between 200eV and 1000eV is pointed in a forward direction near the specular reflection direction of the ion beam. It is assumed that the measured ions correspond to two ionic populations: secondary ions sputtered according to the linear cascade theory and recoil silicon target ions.  相似文献   

6.
The results of a comprehensive study of the energy distributions of ions sputtered from 31 pure elements and two compounds by a 5.5 keV O+2 beam are presented. The spectra were determined under three different ambient conditions: residual vacuum or low argon pressure backfill, oxygen backfill, and nitrogen backfill. The energy spectra of polyatomic ions are narrower and peaked at lower energies than the atomic ion spectra and decrease in width and average energy with greater ion complexity. The statistical model of polyatomic ion formation does not correctly describe the shape of the energy distributions. The atomic ion energy spectra reveal that more than one ionization mechanism is responsible for the formation of ions from the various elements and that the dominant mechanism is frequently different in the presence of a reactive gas than in a vacuum. Periodic trends of the parameters describing the energy distributions are dependent on the electronic structure of the ions. The average energies of the distributions correlate with the sublimation energies of the pure elements, but the most probable energies do not. Apparent surface binding energies calculated from the energy distributions are presented.  相似文献   

7.
A planar polycrystalline copper target was bombarded normally by Ar+ ions with energies ranging from 60 to 300 eV. in the source of a mass spectrometer. The neutral particles sputtered normally from the target were post-ionized and analyzed in the mass spectrometer. A thermionically sustained, magnetically confined low pressure arc plasma was used to supply the bombarding ions, and for post-ionization of the neutral sputtered species. It was found that the relative yields of the sputtered neutral post-ionized Cu2 dimers are linearly proportional to S2, where S is the total sputtering yield for Ar+ -Cu. The results support the recombination model for the formation of neutral dimers in sputtering.  相似文献   

8.
Nitrogen ions were implanted in GaAs1−xPx (x=0.4; 0.65) at room temperature at various doses from 5×1012 cm−2 to 5×1015 cm−2 and annealed at temperatures from 600°C up to 950°C using a sputtered SiO2 encapsulation to investigate the possibility of creating isoelectronic traps by ion implantation. Photoluminescence and channeling measurements were performed to characterize implanted layers. The effects of damage induced by optically inactive neon ion implantation on photoluminescence spectrum were also investigated. By channeling measurements it was found that damage induced by nitrogen implantation is removed by annealing at 800°C. A nitrogen induced emission intensity comparable to the intensity of band gap emission for unimplanted material was observed for implanted GaAs0.6P0.4 after annealing at 850°C, while an enhancement of the emission intensity by a factor of 180 as compared with an unimplanted material was observed for implanted GaAs0.35P0.65 after annealing at 950°C. An anomalous diffusion of nitrogen atoms was found for implanted GaAs0.6P0.4 after annealing at and above 900°C.  相似文献   

9.
A systematic theoretical study of laser-irradiated targets made of material with increasing atomic number has been performed. The formation of energetic light ions resulting from the interaction of an intense ultrashort pulse laser with thin planar targets is investigated theoretically with a two-dimensional relativistic electromagnetic particle-in-cell model. A common parameter, the areal electron density of the foil, can be used to describe qualitatively targets made of different material. By varying either the laser intensity or the target thickness we observe a gradual transition of various ion acceleration mechanisms from one into another. Light ions, such as H+, Li3+, C6+, and Al13+, can be accelerated to GeV energies with existing laser systems at a laser fluence of 10–20 J/μm2.  相似文献   

10.
Inverse kinematics resonance scattering on thick target with EXCYT beams   总被引:1,自引:0,他引:1  
The resonance scattering method in inverse kinematics on infinite target has been applied to two systems, 18O + α and 9Be + α, in order to test and to optimize an experimental apparatus in view of a set of resonance scattering experiments to be performed with 8Li and 9Li radioactive ion beams delivered by the facility EXCYT. The scattering excitation functions, deduced for the two systems, were compared with previous results reported in literature. Results show that reliable stopping power data are essential for the application of this technique.  相似文献   

11.
Using a field emission gun based scanning electron microscopy, we report the formation of nanodots on the InP surfaces after bombardment by 100 keV Ar+ ions under off-normal ion incidence (30° and 60° with respect to the surface normal) condition in the fluence range of 1 × 1016 to 1 × 1018 ions cm−2. Nanodots start forming after a threshold fluence of about 1 × 1017 ions cm−2. It is also seen that although the average dot diameter increases with fluence the average number of dots decreases with increasing fluence. Formation of such nanostructured features is attributed due to ion-beam sputtering. X-ray photoelectron spectroscopy analysis of the ion sputtered surface clearly shows In enrichment of the sputtered InP surface. The observation of growth of nanodots on the Ar+-ion sputtered InP surface under the present experimental condition matches well with the recent simulation results based on an atomistic model of sputter erosion.  相似文献   

12.
The angular distribution of atoms sputtered from germanium under 1–20 keV Ar+ ion bombardment (normal incidence) has been studied experimentally and using computer simulations. A collector technique combined with Rutherford backscattering to analyze the distribution of collected material was used. In addition, the surface topography was under control. It was found that the experimental angular distribution of sputtered atoms (E 0=3–10 keV) could be approximated by the function cos n θ with n≈ 1.65. Such a high value of n is connected with the surface scattering of ejected atoms and a noticeable contribution of backscattered ions to the formation of the sputter flux (the mass effect). The target surface was found to be practically flat even at ion fluencies ~1018 ions/cm2. The results obtained are compared with data from the literature, including our recent data on Si sputtering.  相似文献   

13.
Light emission during sputtering of graphite targets with 1–10 keV Ne+, Kr+ and Xe+ beams has been investigated in the 180-600 nm wavelength range. Beside the characteristic lines of sputtered C1 and C1 +, a continuum superimposed with a number of broad structures was observed in the 250-520 nm range, and having a maximum at 386 nm. Mass analysis of the sputtered flux confirmed the presence of negative carbon clusters C m - , C2 - being the dominant one. Ion beam parameters i.e. ion mass, energy, current density and ion dose were varied to identify the origin of the continuum emission. On the basis of the experimental results, it is suggested that the continuum is predominantly due to the overlapping of various band systems of sputtered C2 with a small contribution from the heavier sputtered carbon clusters Cm (m>2). Received 24 September 1999 and Received in final form 11 February 2000  相似文献   

14.
The energy distributions of the neutral particles sputtered from polycrystalline targets of Al, Ti, Ni, Cu and Ag by normally incident Ar+-ions in the 1 keV region have been determined for ejection energies below 20 eV in a direction close to the normal to the target surface. The experimental method employed is strongly connected to the characteristic properties of a low pressure electrodeless hf plasma used as an effective ion source as well as an ionizing medium for the ejected target atoms. The resulting curves always show a maximum at most probable ejection energies between 1 and 5 eV, being approximately half of the surface binding energy. These curves are converted to the corresponding energy distributions for the recoil atoms within the target by an energy dependent factor. It is found that the energy distribution within the bombarded solid decreases monotonically with the inverse square of the energy of the recoils.  相似文献   

15.
The minimum-detection limits achievable in SIMS analyses are often determined by transport of material from surrounding surfaces to the bombarded sample. This cross-contamination (or memory) effect was studied in great detail, both experimentally and theoretically. The measurements were performed using a quadrupole-based ion microprobe operated at a secondary-ion extraction voltage of less than 200 V (primary ions mostly 8keV O 2 + ). It was found that the flux of particles liberated from surrounding surfaces consists of neutrals as well as positive and negative ions. Contaminant species condensing on the bombarded sample could be discriminated from other backsputtered species through differences in their apparent energy spectra and by other means. The apparent concentration due to material deposited on the sample surface was directly proportional to the bombarded area. For an area of 1 mm2 the maximum apparent concentration of Si in GaAs amounted to 5 × 1016atoms/cm3. The rate of contamination decreased strongly with increasing spacing between the bombarded sample and the collector. The intensities of backsputtered ions and neutrals increased strongly with increasing mass of the target atoms (factor of 10 to 50 due to a change from carbon to gold). The effect of the primary ion mass (O 2 + , Ne+, and Xe+) and energy (5–10keV) was comparatively small. During prolonged bombardment of one particular target material, the rate of contamination due to species not contained in the sample decreased exponentially with increasing fluence. In order to explain the experimental results a model is presented in which the backsputtering effect is attributed to bombardment of surrounding walls by high-energy particles reflected or sputtered from the analysed sample. The level of sample contamination is described by a formula which contains only measurable quantities. Cross-contamination efficiencies are worked out in detail using calculated energy spectra of sputtered and reflected particles in combination with the energy dependence of the sputtering yield of the assumed wall material. The experimental findings are shown to be good agreement with the essential predictions of the model.  相似文献   

16.
We report on room-temperature infrared electroluminescence (EL) from metal-oxide-semiconductor devices made from Si. We compare the luminescence from RF sputtered oxide films containing SiO2 with and without Ge by using a composite target and luminescence from a SiO2 layer made by rapid thermal oxidation. The sputtered films were annealed in the temperature range 600-900 °C. This densifies the films and is likely to reduce the concentration of defects. A luminescence peak located around 1150-1170 nm is observed at current densities as low as 0.1 A/cm2. The corresponding photon energy is close to that of the Si band gap. In addition, we observe several broad luminescence bands in the range 1000-1750 nm. These bands get stronger with Ge in the SiO2 film. Some of these bands have previously been suggested and are directly associated with Ge. Since we observe that the intensity is correlated with the presence of Ge while the mere presence of the bands is not, we discuss the EL bands being due to defects which concentration is influenced by Ge in the oxide.  相似文献   

17.
A new version of integrated target-ion source unit (ionising target) has been developed for the on-line production of radioactive single-charged ions. The target is able to withstand temperatures up to 2500 °C and acts also as an ion source of the surface and laser ionisation. Off-line and on-line experiments with the ionising target, housing tantalum foils as a target material, have been carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility. The off-line surface ionisation efficiency measured for stable atoms of Li, Rb and Cs was correspondingly 6% , 40% and 55% at the target temperature of 2000 °C and 3-10% for atoms of rare-earth elements Sm, Eu, Tm and Yb at a temperature of 2200 °C. The off-line measured values of the ionisation efficiency for stable Gd and Eu atoms by the laser beam ionisation inside the target were 1% and 7%, respectively. The radioactive beam intensities of neutron-deficient rare-earth nuclides from Eu to Lu produced by the integrated target-ion source unit have been measured at a temperature of 2500 °C. The results of the integrated target-ion source unit use for on-line laser resonance ionisation spectroscopy study of neutron-deficient Gd isotopes have been also presented.  相似文献   

18.
Silver, copper, and boron (from a boron nitride target) were sputtered with xenon ions. The isotopic composition of secondary ions of silver was measured at ion energies ranging from 300 eV to 3 keV and, for copper and boron, at 2.0, 2.5, and 3.0 keV. An ion gun was used to generate the ion beam. The secondary ions were detected at a small emission angle by a quadrupole mass spectrometer. The secondary-ion flux of silver was found to be enriched in heavy isotopes at lower incident-ion energies. The heavy-isotope enrichment was observed to decrease with increasing primary-ion energy. Beyond 500 eV, light isotopes of silver were sputtered preferentially with the enrichment increasing to a constant value of 1.018. The sputtered flux of copper and boron also indicated constant enrichments (1.008 and 1.281 for copper and boron respectively) in light isotopes at high ion energies. Received: 2 August 2002 / Accepted 9 August 2002: / Published online: 4 December 2002 RID="*" ID="*"Present address: Pacific Northwest National Laboratory, Richland, WA 99 352, USA RID="**" ID="**"Present address: Philips Display Components Company, Ottawa, OH 45 875 USA RID="***" ID="***"Corresponding author. Fax: +1-334/727-8090, E-mail: pkray@tusk.edu  相似文献   

19.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

20.
Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 × 1013 to 3 × 1016 W/cm2) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号