首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
This paper presents the results of X‐ray fluorescence (XRF) analysis of bricks sampled from historical places in Pernambuco, a state in the northeastern region of Brazil. In this study, twenty bricks found in historical sites were analyzed. Two bricks made in the 17th century, presumably used as ballast in ships coming from Holland, five locally manufactured bricks: one from 18th century, three from 19th century, and one from 20th century, and thirteen bricks collected from a recent Archeological investigation of Alto da Sé, in the town of Olinda. Qualitative determination of the chemical elements present in the samples was undertaken using a self‐assembled portable XRF system based on a compact X‐ray tube and a thermoelectrically cooled Si‐PIN photodiode system, both commercially available. X‐ray diffraction analysis was also carried out to assess the crystalline mineral phases present in the bricks. The results showed that quartz (SiO2) is the major mineral content in all bricks. Although less expressive in the XRD patterns, mineral phases of illite, kaolinite, anorthite, and rutile are also identified. The trace element distribution patterns of the bricks, determined by the XRF technique, is dominated by Fe and, in decreasing order, by K, Ti, Ca, Mn, Zr, Rb, Sr, Cr, and Y with slight differences among them. Analyses of the chemical compositional features of the bricks, evaluated by principal component analysis of the XRF datasets, allowed the samples to be grouped into five clusters with similar chemical composition. These cluster groups were able to identify both age and manufacturing sites. Dutch bricks prepared with different geological clays compositions were defined.  相似文献   

3.
4.
The knowledge of size‐segregated elemental concentrations in atmospheric particulate matter (PM) gives a useful contribution to the complete chemical characterisation; this information can be obtained by sampling with multi‐stage cascade impactors. In this work, samples were collected using a low‐pressure 12‐stage Small Deposit Impactor and a 13‐stage rotating Micro Orifice Uniform Deposit Impactor?. Both impactors collect the aerosol in an inhomogeneous geometry, which needs a special set‐up for X‐ray analysis. This work aims at setting up an energy dispersive X‐ray fluorescence (ED‐XRF) spectrometer to analyse quantitatively size‐segregated samples obtained by these impactors. The analysis of cascade impactor samples by ED‐XRF is not customary; therefore, as additional consistency test some samples were analysed also by particle‐induced X‐ray emission (PIXE), which is more frequently applied to size‐segregated samples characterised by small PM quantities. A very good agreement between ED‐XRF and PIXE results was obtained for all the detected elements in samples collected with both impactors. The good inter‐comparability proves that our methodology is reliable for analysing size‐segregated samples by ED‐XRF technique. The advantage of this approach is that ED‐XRF is cheaper, easier to use, and more widespread than PIXE, thus promoting an intensive use of multi‐stage impactors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Recently, a radically new synchrotron radiation‐based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non‐contact laser‐based sample manipulation with synchrotron radiation confocal X‐ray fluorescence (XRF) microimaging for the first time at ESRF‐ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF‐related challenges are reported. In general, the applicability of the OT‐based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi‐elemental analysis is of relevance at the (sub)micrometre spatial resolution level.  相似文献   

6.
A microprobe system has been installed on the nanoprobe/XAFS beamline (BL8C) at PLS‐II, South Korea. Owing to the reproducible switch of the gap of the in‐vacuum undulator (IVU), the intense and brilliant hard X‐ray beam of an IVU can be used in X‐ray fluorescence (XRF) and X‐ray absorption fine‐structure (XAFS) experiments. For high‐spatial‐resolution microprobe experiments a Kirkpatrick–Baez mirror system has been used to focus the millimeter‐sized X‐ray beam to a micrometer‐sized beam. The performance of this system was examined by a combination of micro‐XRF imaging and micro‐XAFS of a beetle wing. These results indicate that the microprobe system of the BL8C can be used to obtain the distributions of trace elements and chemical and structural information of complex materials.  相似文献   

7.
The combination of energy dispersive X‐ray fluorescence (ED‐XRF) and synchrotron X‐ray absorption near‐edge structure (XANES) provides the detailed composition of fine‐paste ware (FPW) kendis, dated back to 13th–14th century maritime Southeast Asia. Sources of clay and production sites were classified according to Al2O3, SiO2, α‐Fe2O3 and γ‐Fe2O3 as well as trace elements. The similarities based on these components provided another evidence of a trade route between Kota Cina in North Sumatra of Indonesia and Kok Moh on Satingphra Peninsula, a well‐known production area in present‐day Thailand. In additions, the uniquely large contribution of α‐Fe2O3 in XANES spectra suggests that Nakhon Si Thammarat province of Thailand could also be one of FPW production areas in maritime Southeast Asia. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Portable micro‐X‐ray fluorescence (micro‐XRF) spectrometers mostly utilize a polycapillary X‐ray lens along the excitation channel to collect, propagate and focus down to few tens of micrometers the X‐ray tube radiation. However, the polycapillary X‐ray lens increases the complexity of the quantification of micro‐XRF data because its transmission efficiency is strongly dependent on the lens specifications and the propagated X‐ray energy. This feature results to a significant and not easily predicted modification of the energy distribution of the primary X‐ray tube spectrum. In the present work, we propose a simple calibration procedure of the X‐ray lens transmission efficiency based on the fundamental parameters approach in XRF analysis. This analytical methodology is best suited for compact commercial and portable micro‐XRF spectrometers. The developed calibration procedure is validated through the quantitative analysis of a broad range of samples with archeological relevance such as glasses, historical copper alloys, silver and gold alloys offering an overall accuracy of less than 10%–15%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We have applied recently two XRF (micro x‐ray fluorescence) methods [micro‐Grazing Exit XRF (GE‐XRF) and confocal 3D‐XRF] to Japanese lacquerware ‘Tamamushi‐nuri.’ A laboratory grazing‐exit XRF (GE‐XRF) instrument was developed in combination with a micro‐XRF setup. A micro x‐ray beam was produced by a single capillary and a pinhole aperture. Elemental x‐ray images (2D images) obtained at different analyzing depths by micro GE‐XRF have been reported. However, it was difficult to directly obtain depth‐selective x‐ray spectra and 2D images. A 3D XRF instrument using two independent polycapillary x‐ray lenses and two x‐ray sources (Cr and Mo targets) was also applied to the same sample. 2D XRF images of a Japanese lacquerware showed specific distributions of elements at the different depths, indicating that ‘Tamamushi‐nuri’ lacquerware has a layered structure. The merits and disadvantages of both the micro GE‐XRF and confocal micro XRF methods are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Novel confocal X‐ray fluorescence (XRF) spectrometer was designed and constructed for 3D analysis of elementary composition in the surface layer of spatially extended objects having unlimited chemical composition and geometrical shape. The main elements of the XRF device were mounted on a moving frame of a commercial 3D printer. The XRF unit consists of a silicon drift detector and a low‐power transmission‐type X‐ray tube. Both the excitation and secondary X‐ray beams were formed and regulated by simple collimator systems in order to create a macro confocal measuring setup. The spatial accuracy of the mechanical stages of the 3D printer achieved was less than 5 μm at 100‐μm step‐size. The diameter of the focal spot of the confocal measuring arrangement was between 1.5 and 2.0 mm. The alignment of the excitation and secondary X‐ray beams and the selection of the measuring spot on the sample surface were ensured by two laser beams and a digital microscope for visualization of the irradiated spot. The elements of the optical system together with the XRF spectrometer were mounted on the horizontal arm of the 3D printer, which mechanical design is capable of synchronized moving the full spectroscopic device within vertical directions. Analytical capability and the 3D spatial resolution of the confocal spectrometer were determined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Chemical state of cadmium in a hepatopancreas of a scallop (Patinopecten yessoensis) was studied by means of synchrotron radiation‐based X‐ray analytical techniques. X‐ray absorption fine structure (XAFS) and X‐ray fluorescence (XRF) imaging were used to identify the chemical state and the distribution of cadmium in the hepatopancreas, respectively. The results of in vivo Cd K‐edge XAFS suggested that the neighboring atoms of the cadmium in the hepatopancreas are of sulfur. Therefore, we propose that cadmium was accumulated by a metalloprotein with sulfur. Micro XRF imaging of thin sections of the hepatopancreas showed that cadmium is distributed on the surface of intestinal epithelia and concentrated in the internal tissue of the hepatopancreas. These results indicated that scallops accumulate cadmium inside the hepatopancreas through the intestinal epithelium.  相似文献   

12.
The CEARXRF GUI‐Based Monte Carlo–Library Least‐Squares (MCLLS) Code is demonstrated with results from a micro‐focused EDXRF analyzer, which can be used to calculate elemental weight fractions in metal alloys or rock samples accurately by library least‐squares regression of the measured X‐ray spectrum with computer‐generated elemental library spectra. An elemental stratified sampling variance reduction technique has been implemented in the CEARXRF5 code, which equalizes the statistical precision of the elemental libraries within the measured sample independent of the relative elemental amounts that are present. Also, an improved Si(Li) detector response function (DRF) has been obtained for micro‐focused X‐ray fluorescence (XRF) analyzers, and the DRF parameters are obtained based on regression from pure elemental experimental spectra. It is demonstrated that the resulting MCLLS approach can greatly improve the accuracy of elemental XRF analysis results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A blue pigment was identified by micro‐Raman spectroscopy, X‐ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM)/energy dispersive X‐ray (EDX) and X‐ray diffraction (XRD). The test sample, a funerary lacquer tray, belongs to West Han Dynasty (206 BC–AD 8) of China and was decorated with faint blue patterns. The result from Raman spectroscopy showed that the faint blue is covellite (CuS) due to the presence of a characteristic peak at 474.5 cm−1, which further was confirmed by XRF, SEM–EDX and XRD. This research indicated that CuS had been used as a blue pigment to decorate lacquer wares from the West Han Dynasty in China. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Stratified materials are of great importance for many branches of modern industry, e.g. electronics or optics and for biomedical applications. Examination of chemical composition of individual layers and determination of their thickness helps to get information on their properties and function. A confocal 3D micro X‐ray fluorescence (3D µXRF) spectroscopy is an analytical method giving the possibility to investigate 3D distribution of chemical elements in a sample with spatial resolution in the micrometer regime in a non‐destructive way. Thin foils of Ti, Cu and Au, a bulk sample of Cu and a three‐layered sandwich sample, made of two thin Fe/Ni alloy foils, separated by polypropylene, were used as test samples. A Monte Carlo (MC) simulation code for the determination of elemental concentrations and thickness of individual layers in stratified materials with the use of confocal 3D µXRF spectroscopy was developed. The X‐ray intensity profiles versus the depth below surface, obtained from 3D µXRF experiments, MC simulation and an analytical approach were compared. Correlation coefficients between experimental versus simulated, and experimental versus analytical model X‐ray profiles were calculated. The correlation coefficients were comparable for both methods and exceeded 99%. The experimental X‐ray intensity profiles were deconvoluted with iterative MC simulation and by using analytical expression. The MC method produced slightly more accurate elemental concentrations and thickness of successive layers as compared to the results of the analytical approach. This MC code is a robust tool for simulation of scanning confocal 3D µXRF experiments on stratified materials and for quantitative interpretation of experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Several medieval paintings and polychrome sculptures have been analysed in the frame of a collaboration between the Fine Arts Museum of Seville and the National Centre of Accelerators, dedicated to a non‐destructive study of artworks that belong to the wide museum’s collection. Among the oldest artworks in the collection is the panel painting Archangel St. Michael attributed to Juan Hispalense, one of the first painters in the 15th‐century Seville known by name. The panel was analysed by a portable X‐ray fluorescence (XRF) to get more information about the pigments applied and to identify possible later interventions. The results showed that the pigments were those commonly used in that period. Lead white was found in the preparation of the painting and in colour layers. For yellow colour, yellow ochre was used, while for the red one, the painter usually mixed red earth and vermillion. Blue pigment is azurite, while the copper‐based green one could not be determined more specifically by XRF. Brown colour is made with yellow ochre and organic black or, in some cases, umbra. Black pigment is probably bone or ivory black. Many decorative parts of the panel are gilded, which were confirmed by Au peaks. Later interventions were carried out on the base of Ti–Zn white mixed with earth pigments, while for green areas such as Archangel's wings also chrome green was applied. The research is part of a larger study which is still going on, whose aim is to gain more knowledge about the 15th‐ and 16th‐century Spanish painting and polychromy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we discuss approaches to prepare solid samples for X‐ray fluorescence spectrometry (XRF). Although XRF can be used to analyze major and minor elements in various solid samples including powders and grains without dissolution techniques, to obtain reliable XRF results, the prepared sample must meet certain criteria related to homogeneity, particle size, flatness, and thickness. The conditions are defined by the analytical depth of fluorescent X‐rays from analytes, and the analytical depth can be estimated from the X‐ray absorption related to the energy of each X‐ray and the composition and density of the sample. For example, when the sample flatness and particle size are less than the analytical depth and the sample possesses homogeneity within a depth less than the analytical depth, the XRF results are representative of the entire sample. Furthermore, an appropriate sample thickness that is larger than the analytical depth or constant can prevent changes in fluorescent X‐ray intensity with variations in sample thickness. To obtain accurate and reproducible measurements, inhomogeneous solid samples must be pulverized, homogenized, and prepared as loose powder, powder pellets, or glass beads. This paper explains the approaches used to prepare solid samples for XRF analysis based on the analytical depths of fluorescent X‐rays. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Quantitative X‐ray fluorescence (XRF) measurements have been conducted on naturally lead‐contaminated samples. The calibration procedure using the ratio of fluorescence to Compton scattered radiation was investigated using Monte Carlo simulation. Experimental results with low‐energy photons (14 keV) and simulations show a very good linearity of the fluorescence to Compton ratio as a function of metal concentration. Lead (Pb), iron (Fe) and zinc (Zn) are measured in samples of Phaseolus vulgaris (bean seeds) that have been grown using a nutritive solution with different Pb dopings. Naturally contaminated samples are thus obtained. The calibration must be done for fixed conditions of X‐ray energy and scattering angle, while X‐ray beam intensity and detector to sample distance can change from one sample to another. Simulation allows to evaluate the matrix effect on the calibration curve, and shows that linearity is preserved even in the presence of other heavy elements in the fluorescence spectrum. However, calibration must be done using samples with similar matrix as it affects the slope of the curve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Synchrotron based X‐ray excited optical luminescence (XEOL) has been measured with many direct bandgap semiconductors. We present XEOL measurements on crystalline silicon (Si), obtained despite of its indirect bandgap and the consequently low luminescence efficiency. Spectra of monocrystalline and multicrystalline (mc) Si at room temperature are compared to theoretical spectra. A possible application in the synchrotron‐based research on mc‐Si is exemplified by combining XEOL, X‐ray fluorescence (XRF) spectroscopy, photoluminescence (PL) spectroscopy, and microscope images of grain boundaries. This approach can be utilized to investigate the recombination activity of metal precipitates, to analyze areas of different lifetimes on mc‐Si samples and to correlate additional material parameters to XRF measurements. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Four hundred and sixteen silver coins stemming from the Ottoman Empire (16th and 17th centuries) were analyzed to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. As most of the coins showed the typical green patina on their surfaces due to corrosion processes that have led to the depletion of copper in the near surface domains of the silver coins in comparison to their core composition, small samples had to be taken, embedded in synthetic resin, and cross sectioned to investigate the true‐heart metal composition. μ‐synchrotron micro X‐ray fluorescence analysis and μ‐proton‐induced X‐ray emission were applied to determine the silver contents as well as the minor and trace elements. The type of the alloy was investigated as well as if coins minted in different locations demonstrated homogeneous traits concerning the predominant impurities (Au and Bi), which could suggest a common ore. Finally, energy‐dispersive microanalysis in a scanning electron microscope was applied to study the homogeneity/heterogeneity of the coins and the presence of surface enrichments and to explain differences between the μ‐synchrotron micro X‐ray fluorescence analysis and μ‐proton‐induced X‐ray emission measurements concerning the main component. In general, the silver content of the analyzed specimen varies between 90 and 95%. These outcomes have not supported the historical interpretations, which predict that during the period studied, a debasement of approximately 44% of the silver content of the coins should have occurred. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Argillaceous rocks are considered as suitable host rock formation to isolate the high‐level radioactive waste from the biosphere for thousands of years. Boda Claystone Formation, the possible host rock formation for the Hungarian high‐level radioactive waste repository, has geologically and mineralogically been studied in detail, but its physico‐chemical parameters describing the retention capability of the rock needed further examinations. Studies were performed on thin sections subjected to 72 h sorption experiments using inactive Nd(III). Nd(III) has been used as a chemical analogue for transuranium elements of the radioactive waste to examine the ion uptake capability of the micrometre size mineral phases occurring in the rock. The elemental mapping of synchrotron radiation‐based microscopic X‐ray fluorescence (micro‐XRF) combined with scanning electron microscopy energy dispersive X‐ray analysis (SEM/EDX) has sufficient sensitivity to study the uptake capability of the different mineral phases on the microscale without the necessity of applying radioactive substances. Elemental maps were recorded on several thousand pixels using micrometre magnitude spatial resolution. By interleaving micro‐XRF and SEM/EDX data sets from the same sample area and applying multivariate methods, calcite and clay minerals could be identified as the main mineral phases responsible for Nd(III) uptake without using additional microscopic X‐ray diffraction mapping. It should be highlighted that the ion uptake capability of dolomite containing calcium and magnesium could be distinguished from the characteristics of calcite only by the interleaving of micro‐XRF and SEM/EDX data sets. The presence of minerals was verified by applying microscopic X‐ray diffraction point measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号