首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Data on the cross sections for single-electron charge exchange and excitation in collisions of He+ ions with C5+, N6+, and O7+ ions in the He+ ion energy range of 0.2–3.0 MeV are obtained for the first time. The cross sections for the single-electron charge transfer into the singlet and triplet 1snl states of C4+, N5+, and O6+ (2≤n≤5) ions and for the 1s → 2p 0, ±1 electronic excitation of He+(1s) ions are calculated. The calculations were performed by solving close-coupling equations on the basis of ten two-electron quasi-molecular states.  相似文献   

2.
Absolute cross sections for electron-impact single ionization, dissociative excitation and dissociative ionization of the ethynyl radical ion (C2D+)^+) have been measured for electron energies ranging from the corresponding reaction thresholds to 2.5 keV. The animated crossed electron-ion beam experiment is used and results have been obtained for the production of C2D2+, C2+, C2+_2^+ , CD+, C+ and D+. The maximum of the cross section for single ionization is found to be (2.01 ± 0.02) × 10-17 cm2, at the incident electron energy of 105 eV. Absolute total cross sections for the various singly charged fragments production are observed to decrease by a factor of almost three, from the largest cross-section measured for C+, over C2+_2^+ and CD+ down to that of D+. The maxima of the cross sections are obtained to be (14.5 ± 0.5) × 10-17 cm2 for C2+_2^+, (12.1 ± 0.1) × 10-17 cm2 for CD+, (27.7 ± 0.2) × 10-17 cm2 for C+ and (11.1 ± 0.8) × 10-17 cm2 for D+. The smallest cross section is measured to be (1.50 ± 0.04) × 10-18 cm2 for the production of the doubly charged ion C2+. Individual contributions for dissociative excitation and dissociative ionization are determined for each singly-charged product. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. Kinetic energy release distributions of dissociation fragments are seen to extend from 0 to 6 eV for the heaviest fragment C2+_2^+, up to 11.0 eV for CD+, 14.2 eV for C+ and 11.2 eV for D+ products.  相似文献   

3.
H+ impact single and He2+ impact single and double electron capture cross sections of magnesium atoms have been calculated in the modified binary encounter approximation (BEA). The accurate expressions of ion impact sDE\sigma _{\Delta {E}} (cross section for energy transfer DE\Delta E) and Hartree-Fock momentum distributions of the target electrons have been used throughout the calculations. On the basis of the present work it is concluded that inner shell captures by H+ and He2+ ions incident on magnesium atoms contribute partly to single electron capture and partly to transfer ionization cross sections. The calculated He2+ impact double electron capture cross sections of magnesium are in reasonably good agreement with the experimental observations. This indicates the success of the present theoretical approach in study of charge transfer cross sections of atoms as indirect mechanisms do not interfere with double electron capture processes in this case.  相似文献   

4.
Absolute cross sections for electron impact dissociation of ND+ leading to the formation of D+ have been measured by applying the animated electron-ion beam method in the energy range from the reaction threshold up to 2.5 keV. The maximum inclusive cross section is observed to be (16.8 ± 0.8) × 10−17 cm2 at the electron energy of 65.1 eV. The appearance energy for the D+ production is measured to be (4.0 ± 0.5) eV. Collected data are analyzed in details by means of an original procedure in order to determine separately the contributions of dissociative channels. A specific Monte Carlo modeling has been developed, which is proven to reconstruct adequately the dissociative ionization cross section. The present energy thresholds provide information about the ground and excited states of the molecular ion, as well as about the possible population of the vibrational levels. The reaction D2(v) + N+ (or H2(v) + N+) is a probable source for that population and it constitutes the first step of the molecular activated processes, so the corresponding chain of reactions has to be considered to study the chemistry of plasma sources.  相似文献   

5.
The surface reduction of higher oxide WO3 under irradiation by He+ ions with the energies 1 and 3 keV in a high vacuum is investigated by X-ray photoelectron spectroscopy. It is found that lower WO2 and intermediate WO x (2 < x < 3) oxides form first in WO3 surface layers under He+ ion bombardment, and with an increase in the irradiation dose metallic tungsten forms. It is shown that the degree of irradiated oxide surface metallization increases with an increase in the energy of the bombarding He+ ions. A comparison of WO3 oxide surface composition modification under He+ and Ar+ ion irradiation is presented.  相似文献   

6.
The existence of a metastable cluster He 4 * with total spin S = 2 is predicted. The cluster consists of two covalently bound excited spin-polarized triplet He 2 * molecules and is rectangular in shape. The electron wavefunctions, the dependence of the energy He 4 * system on the distance between the He 2 * triplet molecules, the atomic spacing, the frequency spectrum of natural oscillations of the cluster, and other characteristics are calculated from first principles. It is shown that the metastable state is formed if one of the excited He 2 * molecules is in the 3Σ u + state, while the other is in the 3Πg state. The radiation lifetime τ of the metastable cluster He 4 * is calculated; it is found to range from 100 to 200 s, which is much longer than the lifetime τ ≈ 20 s of the triplet molecule He 2 * (3Σ u + ). The height U ≈ 0.5 eV of the potential barrier preventing the departure from the local energy minimum is determined. The energy Eacc ≈ 9 eV/atom accumulated in the He 4 * cluster is calculated; this energy considerably exceeds the energy of known chemical energy carriers. It is shown that the accumulated energy is released virtually completely during decomposition of the He 4 * cluster into individual helium atoms. This means that helium clusters are a promising material with a high accumulated energy density (HEDM).  相似文献   

7.
Simultaneous ionization and excitation of helium by electron impact is considered in an improved second Born approximation. The wave function of the low energy ejected electron is obtained in the field of residual He+ ion in 2s-state. The calculation has been done for the processe +He→e +He+(2s)+e in the coplanar asymmetric geometry with Hartree-Fock wave function of Byron and Joachain for the helium ground state and the results are compared with the absolute experimental data of Dupreet al [J. Phys. B25, 259 (1992)] at ∼ 5.5 keV incident energy. Our results are found to increase the ratio of the recoil peak to binary peak intensity by about 30% over the first Born results and thus to bring it closer to the experimental data.  相似文献   

8.
In this study, Ip = 1+\ensuremath I^{\pi} = 1^{+} and Ip = 1-\ensuremath I^{\pi} = 1^{-} dipole mode excitations are systematically investigated within the rotational and translational + Galilean invariant quasiparticle random-phase approximation for 232Th , 236U , and 238U actinide nuclei. It is shown that the investigated nuclei reach a B(M1) strength structure, which corresponds to the scissors mode. The calculated mean excitation energies as well as the summed B(M1) value of the scissors mode excitations are consistent with the available experimental data. The results of calculations indicate large differences to the rare-earth nuclei as is the case for the experiment: a doubling of the observed dipole strengths and a shift of the energy centroid to the lower energies by about 800keV. The calculations indicate the presence of a few prominent negative-parity Kp = 1-\ensuremath K^{\pi} = 1^{-} states in the 2.0-4.0MeV energy interval. The occurrence of the negative-parity dipole states with the rather high B(E1) value less than 4MeV shows the necessity of explicit parity measurements for the correct determination of the scissors mode strength in 232Th , 236U , and 238U isotopes.  相似文献   

9.
Ion cluster desorption yields from LiF were measured at PUC-Rio with ≈0.1 MeV/u N q+ (q = 2,4,5,6) ion beams by means of a time-of-fight (TOF) mass spectrometer. A 252Cf source mounted in the irradiation chamber allows immediate comparison of cluster emissions induced by ≈65 MeV fission fragments (FF). Emission of (LiF) n Li+ clusters are observed for both the N beams and the 252Cf fission fragments. The observed cluster size n varies from 1 to 6 for N q+ projectiles and from 1 to ≈40 for the 252Cf-FF. The size dependence of the Y(n) distributions suggests two cluster formation regimes: (i) recombination process in the outgoing gas phase after impact and (ii) emission of pre-formed clusters from the periphery of the impact site. The corresponding distribution of ejected negative cluster ions (LiF) n F closely resembles that of the positive secondary (LiF) n Li+ ions. The desorption yields of positive ions scale as Y(n) ∼ q 5. A calculation with the CASP code shows that this corresponds to a cubic scaling ∼S e 3 with the electronic stopping power S e , as predicted by collective shock wave models for sputtering and models involving multiple excitons (Frenkel pair sputtering). We discuss possible interpretations of the functional dependence of the evolution of the cluster emission yield Y(n) with cluster size n, fitted by a number of statistical distributions.  相似文献   

10.
Heavy ion collisions U92+-U91+(1s) at a 6 MeV incident particle energy per nucleon are considered. The wave function of the electron was determined by solving the Dirac time-dependent equation in a central field, which is the sum of the potential of the target nucleus and the potential of the incident nucleus taken in the monopole approximation. The Dirac equation was solved using the basis set of Hermitian B-splines. The probabilities of remaining in the 1s target state were calculated as functions of the impact parameter.  相似文献   

11.
Electron impact double ionization cross-sections of Sc+ions have been calculated in the binary encounter approximation (BEA). Accurate expression of σΔE(cross-section for energy transfer ΔE) and Hartree-Fock velocity distributions for the target electrons have been used throughout the calculations. Direct double ionization from ejection of 3d and 4s electrons has been investigated in the modified double binary encounter model incorporating the focusing action of the target ion on the incident electron. The identification of the 3p shell whose ionization provides a major contribution to double ionization through ionization-autoionization is an interesting aspect of the present investigation. The theoretical results show satisfactory agreement with the experimental observations.  相似文献   

12.
The He-Ar-Cu+ IR laser operates in a hollow-cathode discharge, typically in a mixture of helium with a few-% Ar. The population inversion of the Cu+ ion levels, responsible for laser action, is attributed to asymmetric charge transfer between He+ ions and sputtered Cu atoms. The Ar gas is added to promote sputtering of the Cu cathode. In this paper, a hybrid modeling network consisting of several different models for the various plasma species present in a He-Ar-Cu hollow-cathode discharge is applied to investigate the effect of Ar concentration in the gas mixture on the discharge behavior, and to find the optimum He/Ar gas ratio for laser operation. It is found that the densities of electrons, Ar+ ions, Arm * metastable atoms, sputtered Cu atoms and Cu+ ions increase upon the addition of more Ar gas, whereas the densities of He+ ions, He2 + ions and Hem * metastable atoms drop considerably. The product of the calculated Cu atom and He+ ion densities, which determines the production rate of the upper laser levels, and hence probably also the laser output power, is found to reach a maximum around 1–5 % Ar addition. This calculation result is compared to experimental measurements, and reasonable agreement has been reached. Received: 14 October 2002 / Revised version: 28 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +32-3/820-23-76, E-mail: annemie.bogaerts@ua.ac.be  相似文献   

13.
The emission of a low-pressure helium plasma (P≤2 Torr) initiated by a monochromatic electron beam is investigated. It is found that an increase in the current leads to a drastic increase in the rate of charge exchange of doubly charged helium ions. The assumption is made that inelastic collisions of He++ ions with metastable helium atoms provide the main channel of charge exchange of these ions due to the reaction He+++Hem→ He+*+He 0 + .  相似文献   

14.
We have measured the absolute values of the total cross section of the one-electron capture by He2+ ions in the kinetic energy range 2–30 keV at the Ar atoms. The absolute values of the differential scattering cross sections of He+ ions formed during the one-electron capture and the electron capture with ionization at energies of 2.2, 5.4, and 30 keV have been determined. The electronic states of the formed ions have been determined using collision spectroscopy based on analysis of the change in the kinetic energy of He+ after the interaction. We have measured doubly differential (with respect to the kinetic energy and the scattering angle) cross sections of the formation of free electrons. The free electron formation channels (direct ionization and electron capture with ionization) have been analyzed by calculating the electron terms of the (HeAr)2+ system. The calculated cross section of capture with ionization is in conformity with the cross section measured using collision spectroscopy.  相似文献   

15.
Time-of-flight mass spectroscopy methods are employed for studying processes occurring during capture of electrons by 3He2+ and Ar6+ multiply charged ions with energy 6z keV (z is the ion charge) from C2H n molecules (n = 2, 4, 6) with different multiplicities of C-C bonds. Fragmentation schemes of the molecular ions formed in such processes are established from analysis of correlations of recording times for all fragment ions. The absolute values of the cross sections of capture of an electron and capture with ionization are measured, as well as the cross sections of formation of fragment ions in these processes. The absolute values of total capture cross sections for several electrons are determined.  相似文献   

16.
We report the measured results of the 200 nm—1000 nm characteristic spectral lines of target atoms when highly charged ions40Ar q+(6≤q≤14) with the same kinetic energy and40Ar6+ with different kinetic energies are incident upon Al, Ti, Ni, Ta and Au surfaces, respectively. The results for129Xe6+,129Xe10+ and129Xe15+ with the same kinetic energy (150 keV) incident upon a Ta surface are also reported. These results show that when the projectile and target are properly selected (40Ar12+ impinges on Al,129Xe6+ impinges on Ta), the spectral intensity of characteristic spectral lines of the target atom is effectively enhanced, and is not strongly dependent on the kinetic energy of the incident ions.  相似文献   

17.
Exit angle and energy dependences of the charge-state distribution of backscattered He ions were investigated when 500 keV He+ ions were incident on SiO2. The energy dependence of the He+ fraction was estimated by comparing the measured He+ spectra with the simulated spectra of He ions in all charge states at the exit angles of 5-25° with respect to the SiO2 surface. We found that the He+ fraction is almost independent of the exit angle at energies higher than 250 keV and the observed energy dependence of the He+ fraction is in good agreement with that for the carbon-foil-transmission experiment. In the low energy region (<250 keV), however, the He+ fraction decreases as the exit angle decreases.  相似文献   

18.
19.
Recently the first excited state in 135Sb has been observed at the unexpectedly low excitation energy of only 282keV and interpreted as mainly d 5/2 proton coupled to the 134Sn core. Based on theoretical considerations it was suggested that its low excitation energy is related to a relative shift of the proton d 5/2 and g 7/2 orbits induced by the neutron excess. We have measured the lifetime of the 282keV state by the advanced time-delayed βγγ(t) method. The measured half-life, T 1/2 = 6.1(4)ns, yields exceptionally low limits of B(M1;5/21 +→7/21 +)≤3.0×10-4 μ 2 N and B(E2;5/21 +→7/21 +)≤54e 2 fm 4. These strongly hindered M1 and slow E2 transition rates are similar to those for the transition de-populating the first excited state at 405keV in 211Bi. Results of shell model calculations with realistic interactions are presented. The M1 decay rate was found to be extremely sensistive both to the wave function and to the M1 effective operator.  相似文献   

20.
Spectroscopic studies of collisions between He+ and He++ ions with H2 gas target have been performed in the 200–600 nm wavelength range. Atomic lines of hydrogen Balmer series and several helium lines were identified and their excitation functions between 50 eV and 1 keV (2 keV for He++) were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号