首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米磷化镓粉体还原氦过程的Raman光谱分析   总被引:2,自引:2,他引:0  
利用Raman光谱对还原氮后的纳米磷化镓(GaP)粉体进行了表征。结果表明:纳米GaP粉体表面含有Ga-O,P-O和H-O化学键。此外,进行氮还原过程后,在Raman位移约为1700~3300cm^-1范围内(相当于709~800nm或1.55~1.75eV),纳米GaP的Raman光谱出现了一个宽、强荧光发射峰;而在未进行通氮处理的纳米GaP Raman光谱中,没有观察到该荧光峰的存在。本文对该荧光发射峰的起因作了初步分析。  相似文献   

2.
利用Raman光谱对还原氮后的纳米磷化镓(GaP)粉体进行了表征。结果表明:纳米GaP粉体表面含有Ga-O,P-O和H-O化学键。此外,进行氮还原过程后,在Raman位移约为1700~3300cm-1范围内(相当于709~800nm或1.55~1.75eV),纳米GaP的Raman光谱出现了一个宽、强荧光发射峰;而在未进行通氮处理的纳米GaPRaman光谱中,没有观察到该荧光峰的存在。本文对该荧光发射峰的起因作了初步分析。  相似文献   

3.
We use infrared (IR) and Raman spectroscopies to investigate the optically active phonon modes in InP nanoparticles and InP/II–VI core-shell nanoparticles fabricated by similar colloidal chemistry methods. The IR transmission spectra of several InP nanoparticle samples exhibit a common absorption feature, which we assign to the Fröhlich mode. The Raman results for the same samples show transverse and longitudinal optical phonon peaks, and scattering strength in between due to surface optical (SO) modes. Infrared spectra of the InP/ZnSe core-shell nanoparticles () exhibit three absorption features, one due to the InP core, and the others associated with the ZnSe shell layer. Raman measurements (12–292 K) also show three phonon-related peaks, whose intensities vary sharply with temperature. The frequencies of the IR and Raman lines are in approximate accord with dielectric continuum theory.  相似文献   

4.
Raman scattering studies were performed in GaN nanoribbons grown along [1 0 0]. These samples were prepared inside Na‐4 mica nanochannels by the ion‐exchange technique and subsequent annealing in NH3 ambient. Detailed morphological and structural studies including the crystalline orientation were performed by analyzing the vibrational properties in these GaN nanoribbons. Pressure in the embedded structure was calculated from the blue shift of the E2(high) phonon mode of GaN. Possible red shift of optical phonon modes due to the quantum confinement is also discussed. In addition to the optical phonons allowed by symmetry, two additional Raman peaks were also observed at ∼633 and 678 cm−1 for these nanoribbons. Calculations for the wavenumbers of the surface optical (SO) phonon modes in GaN in Na‐4 mica yielded values close to those of the new Raman modes. The SO phonon modes were calculated in the slab (applicable to belt‐like nanoribbon) mode, as the wavenumber and intensity of these modes depend on the size and the shape of the nanostructures. The effect of surface‐modulation‐assisted electron–SO phonon scattering is suggested to be responsible for the pronounced appearance of SO phonon modes. A scaling factor is also estimated for the interacting surface potential influencing the observed SO Raman scattering intensities. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Raman scattering is shown to be an effective probe of optical and surface optical phonons in highly crystalline semiconducting nanowires (SNWs). We show that the confinement model of Richter et al. well describes the nanowire diameter dependence of the asymmetric broadening of the one-phonon band in Si nanowires observed at ∼520 cm-1. We also show that the use of high laser flux (∼0.1 mW/μm2) leads to a second mechanism that can asymmetrically broaden the 520 cm-1 Raman band. This broadening has nothing to do with confinement, and can qualitatively be understood in terms of inhomogeneous laser heating. A model is presented that supports this explanation. The production of SNWs via the vapor–liquid–solid growth mechanism leads, in many cases, to an instability in the nanowire diameter or cross-sectional area. In the second part of this review, we show that this instability activates the surface optical (SO) phonon Raman scattering. Examples of this phenomenon are shown for GaP and ZnS nanowires. The former and latter have, respectively, cylindrical and rectangular cross sections. We show that the cross-sectional shape of the nanowire is important for a quantitative analysis of these SO modes. PACS 78.67.-n; 78.67.Lt; 78.30.-j; 78.30.Fs; 72.10.Di  相似文献   

6.
We present a new method of measuring the phonon damping function Γ(ω) as a function of frequency by means of Raman scattering from phonon-polaritons. This experimental method is applied to GaP and we obtain Γ(ω) vs. ω for the transverse optical (TO) phonons of GaP at room temperature. The improved sensitivity and frequency resolution of this technique allows one to observe fine details in the structure of Γ(ω) vs. ω which were not revealed by previous studies.  相似文献   

7.
We have presented a theoretical study on electron resonant Raman scattering (ERRS) process associated with the bulk longitudinal optical (LO), surface optical (SO) and quasi-confined (QC) phonon modes in a free-standing wurtzite nanowire (NW). We consider the Fröhlich electron–phonon interaction in the framework of the dielectric continuum model. Numerical calculations on the GaN material reveal that differential cross-section (DCS) is sensitive to the wire size. The bulk LO and high-frequency quasi-confined (QC+) phonons make main contributions to the DCS and the impact of the SO phonon can be negligible in the ERRS process. Moreover, scattering intensity of the bulk LO phonon is strongly enhanced as the incident photon energy approaches the energy band-gap of the GaN.  相似文献   

8.
We report Raman scattering results of wurtzite ZnS nanowires, nanocombs, and nanobelts. The Raman spectrum obtained from ZnS nanowires exhibits first‐order phonon modes at 272, 284, and 350 cm−1, corresponding to A1/E1 transverse optical, E2 transverse optical, and A1/E1 longitudinal optical phonons, respectively. Several multiphonon modes are also observed. The longitudinal optical phonon mode varies in wavenumber for nanocombs and nanobelts, indicating that the residual strain varies during the morphological change from ZnS nanowires to nanocombs and ultimately to nanobelts. Interestingly, a surface optical (SO) phonon mode varies in wavenumber depending on the shape and surface roughness of the ZnS nanostructures. The surface modulation wavelengths of the ZnS nanowires, nanocombs, and nanobelts are estimated using the SO phonon dispersion relations and the observed SO phonon wavenumbers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
We have investigated one phonon resonant Raman scattering in GaN nanowires (NWs) with ring geometry. We consider the Fröhlich electron–phonon interaction in the framework of the dielectric continuum approach. The selection rules are studied. For the GaN NWs with small radius, results reveal that the main contribution to the differential cross-section (DCS) stems from the surface optical (SO) phonons especially from the high-frequency of SO phonons, with a minor contribution from the longitudinal optical (LO) phonons. Meanwhile, dispersions of the two branches of the SO phonon modes are obvious when the wire is thin. Moreover, compared to GaAs NWs, the GaN NWs make more contribution to the DCS in the small quantum size.  相似文献   

10.
The surface optical (SO) mode of ellipsoidal gallium phosphide (GaP) nanoparticles is investigated by infrared transmission spectroscopy. The surface mode theory of diatomic cubic particles is generalized and applied to GaP nanoparticles in a systematic treatment. The Fröhlich mode of GaP nanoparticles has been observed in our experiment. As far as surface mode frequency is concerned, the result of the experiment agrees with that of the theoretical calculation. The characteristics of the SO mode peak, including frequency shift, broadening and line shape, are analyzed. The frequency shift is attributed to the surrounding medium effect, surface oxidation and the aggregation effect as well as intrinsic point defects; the broadening is mainly due to the non-spherical particle shape, aggregation and quantum confinement effect; and the line shape is related to the particle shape and the damping function.  相似文献   

11.
GaP nanoparticles have been prepared using white P and a mild aqueous synthesis at decreased temperature followed by ultrasonication and stored as the suspension in water–ethanol mixture. They were characterized by standard methods of X-ray diffraction, transmission electron microscopy, Raman light scattering, and photoluminescence. Properties of GaP nanoparticles were compared with industrial and specially grown perfect GaP single crystals. It was shown that the GaP nanoparticles in suspension are the most suitable for high quality GaP/polymers nanocomposites because only they are uniform with dimensions of about 10 nm which is optimal for appearance of the pronounced quantum confinement effect. Polyglycidyl methacrylate (PGMA), polyglycidyl methacrylate-co-polyoligoethyleneglycol methacrylate (PGMA-co-POEGMA), and biphenyl vinyl ether (BPVE) polymers were used to prepare GaP polymer nanocomposites. The thickness of the polymer nanocomposite film was about 250–300 nm defined from AFM scratch experiment. The resulting nanocomposites yielded a bright luminescence at room temperature in a broad band with the maximum ranging from 2.5 to 3.2 eV and showed pronounced quantum confinement effects and other interesting and important for application phenomena leading to dramatic 1 eV expansion of GaP luminescence to the UV spectral region.  相似文献   

12.
Raman scattering from gas-evaporated GaP microcrystals smaller than about 400 Å has been investigated. As the crystalline size decreases from ~400 to ~170 Å, drastic changes in the Raman spectrum are observed; the TO and surface phonon peaks broaden and shift, and they strongly overlap with each other, finally transforming into a broad structure; broad bands located at around 80 and 200 cm-1 appear and grow rapidly. The microcrystals smaller than about 250 Å show spectra very similar to those of amorphous GaP, even though the electron diffraction patterns prove that they are crystalline. The amorphous-like Raman signals seem to come from the surface layers of the microcrystals.  相似文献   

13.
利用Raman光谱并结合能量色散X射线显微分析(EDX)和X射线衍射图谱(XRD)对混杂于纳米磷化镓粉体内的石墨和金刚石纳米微晶进行了分析。结果表明,在纳米GaP粉体Raman光谱中,位于1324 cm-1和1572 cm-1的两个宽强散射谱带分别归属于金刚石的F2g模和石墨的E2g模振动。EDX结果证实纳米GaP粉体材料中含有碳元素。XRD图谱中出现了石墨和金刚石的低晶面指数衍射峰。  相似文献   

14.
We have presented a theoretical calculation of the differential cross section (DCS) for the electron Raman scattering (ERS) process associated with surface optical (SO) phonon modes in a semiconductor quantized spherical film. We consider the Fröhlich electron–phonon interaction in the framework of the dielectric continuum approach. We study the selection rules for the processes. Singularities are found to be size-dependent and by varying the size of the QDs, it is possible to control the frequency shift in the Raman spectrum. A discussion of the phonon behavior for the films with large and small size is presented. The numerical results are also compared with that of experiments.  相似文献   

15.
A complete Raman study of GaP nanowires is presented. By comparison with the Raman spectra of GaP bulk material, microcrystals and nanoparticles, we give evidence that the Raman spectrum is affected by the one-dimensional shape of the nanowires. The Raman spectrum is sensitive to the polarization of the laser light. A specific shape of the overtones located between 600 and 800 cm-1 is actually a signature of the nanowires. Some phonon confinement and thermal behavior is also observed for nanowires.  相似文献   

16.
We report Raman scattering from (GaP)n/(InP)n (n = 1, 1.7, 2) short‐period superlattice (SPS) structures to study the effect of lateral composition modulation (LCM) on the behavior of optical phonons. Cross‐sectional transmission electron microscope images revealed that LCM was formed with complex pattern in the n = 1.7 and n = 2 samples grown at 490 °C. Interestingly, both the InP‐ and the GaP‐like longitudinal optical (LO) phonon energies increased systematically as the number of monolayers was increased from n = 1 to n = 2. A significant broadening of the phonon line shapes was also observed for the n = 1.7 and n = 2 samples. In contrast, for samples grown at 425 °C, both the increase of the LO phonon energies and the broadening of the phonon line shapes were observed only when n = 1.7. Our results demonstrate that the optical phonons in the (GaP)n/(InP)n SPS structures are significantly affected in the occurrence of LCM related to the growth temperature and the number of monolayers.Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We have presented a theoretical calculation of the differential cross section (DCS) for the electron Raman scattering (ERS) process associated with the surface optical (SO) phonon modes in semiconductor quantum dots (QDs). We consider the Fröhlich electron-phonon interaction in the framework of the dielectric continuum approach. Different scattering configurations are discussed and the selection rules for the processes are also studied. Singularities are found to be sensitively size-dependent and by varying the size of the QDs, it is possible to control the frequency shift in the Raman spectra. A discussion of the phonon behavior for QDs with large and small size is presented. The numerical results are also compared with that of experiments.  相似文献   

18.
ZnO nanocombs with different sizes are synthesized by simple thermal evaporation methods. Scanning electron microscopy and transmission election microscopy testify the growth of single crystal ZnO nanocombs along [0 0 0 2] direction. The temperature-dependent Raman spectra show that the intensity of surface optical (SO) modes in ZnO nanocombs obviously increases with declining measure temperatures. With the decrease of diameters, the frequency of SO modes shows a blue shift due to the passivation of surface states. The resonant Raman scattering shows that the strength of electron–phonon coupling increases with decreasing size. Calculated on size-dependent electron–phonon interaction energy agrees well with measured values for a large size range. The origin of electron–phonon coupling in ZnO nanocombs is also discussed.  相似文献   

19.
The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.  相似文献   

20.
GaP nanochains have been synthesized by hydrogen-assisted thermal evaporation, and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and Raman spectroscopy. GaP nanochains possess a (111) twin crystal plane-modulated quasi-periodic structure, that gives a strong green photoluminescence at 618 nm. While the Raman spectrum of the nanochains is similar to that of the GaP crystal, the intensity of the longitudinal optical (LO) peak is stronger than that of the transverse optical (TO) peak, which is supposedly related to the nanochain microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号