首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高永慧 《应用声学》1999,18(1):32-35
本文利用超声检测中的穿透法,用频率为0.5 MHz、 1MHz、 1.25MHz、 2MHz、 2.5MHz的声波,测量了气一水混相介质中的声速比值和声透射损失。结果表明:在气泡大小、分布一定的情况下,可能用声透射损失来确定混相介质中的含气量,但不宜用声速比值.  相似文献   

2.
用声透射损失测气一水混相介质中的含气量   总被引:3,自引:0,他引:3       下载免费PDF全文
高永慧 《应用声学》1999,18(1):32-35
本文利用超声检测中的穿透法,用频率为0.5MHz、1MHz、1.25MHz、2MHz、2.5MHz的声波,测量了气-水混相介质听声速比值和声透射损失,结果表明,在气泡大小,分布一定的情况下,可能用声透射损失来确定混相介质中的含量量,但不宜用声速比值。  相似文献   

3.
二极管激光泵浦固体激光器和稳频研究   总被引:1,自引:0,他引:1  
林岳明  何慧娟 《光学学报》1996,16(12):700-1703
用调制法布里-珀罗干涉仪方法稳定二极管激光泵浦的NdYVO4单频激光器的频率。在锁定情形下,激光频从自由运行慢漂移1.43MHz/s和抖动±2.5MHz分别改善到75.75kHz/s和±1MHz  相似文献   

4.
任成  杨星团  张书练 《应用光学》2012,33(6):1147-1152
 基于微片Nd∶YAG 正交偏振双频激光器,研究了若干重要的双频激光器腔调谐现象, 包括光强调谐、频差调谐、子谐振腔效应及频差闭锁等,给出了实验结果和数据。腔调谐下,正交双频的频差调谐量约为350 kHz;存在子谐振腔效应时,频差调谐量最大可达到2 MHz;未发现明显频差闭锁现象,频差最小值可达到14 MHz。  相似文献   

5.
反常声电光偏转器   总被引:7,自引:1,他引:6       下载免费PDF全文
本文介绍的新型声光偏转器可提高传统光偏转器的带宽,制作了一个LN反常声电光偏转器,中心频率为60MHz测试结果表明,带宽由原来的26MHz提高到37MHz。  相似文献   

6.
我们对电感耦合式的LC谐振器进行了研究,在100MHz到1.5GHz的频段内测量了这种谐振器的有载品质因数QL,并在130MHz的电路上使用电感耦合式谐振器进行了磁场测量.实验表明,与原来的电容分路式谐振器相比,电感耦合式谐振器能提高品质因数Q2~3倍,可用于较宽的频段范围内(100MHz~1.5GHz),具有参数易于控制的优点,实际测量得到的磁通噪声谱密度,与电容分路式的谐振器相比,下降了30%.  相似文献   

7.
空间积分声相关处理的研究   总被引:1,自引:0,他引:1  
何大伟  许承杰 《光学学报》2000,20(11):514-1517
利用声光布拉格器件成功地设计并研制出了空间积分声光相关器,实现了对模拟雷达信号(占空比为50%,重复频率1MHz,载频为140MHz)的空间积分声光相关检测。  相似文献   

8.
三烷基氧膦是用于高放废液处理的萃取剂,本文试验了在辐照剂量为1×10^4Gy-1×10^6Gy时TRPO损失率。结果表明,100%(V/V)TRPO在λ辐照剂量10^4Gy-10^6Gy变化时,辐解损失率为1.2%-1.6%;30%(V/V)TRPO-煤油在辐照剂量10^4Gy-10^5Gy时,辐解损失率基本不变(0.33%-0.34%),而在1×10^6Gy时增加到0.77%。均低于磷酸三丁酯的  相似文献   

9.
300MHz激光扫描声学显微镜   总被引:3,自引:0,他引:3  
本文对激光扫描声学显微镜(SLAM)的刀口理论以及利用谐波技术提高其工作频率的方法进行了研究.实验上实现了使基波频率为100MHz的SLAM工作于300MHz三次谐波上.最后给出了一些样品在300MHzSLAM系统上较清晰的声学图像.  相似文献   

10.
抗等离子体辐照的防氚渗透材料的研究   总被引:3,自引:1,他引:2  
本文研究了氚在经能量为1keV和28keVH+离子辐照的316L不锈钢中,及其TiC和TiN+TiC表面镀层材料中的扩散渗透行为。结果表明,316L不锈钢表面经1keVH+离子辐照后,在352oC下氚在其中的渗透率比在有天然氧化膜的316L不锈钢中的渗透率高247倍,但只为表面镀钯的316L不锈钢中的渗透率的1/1.65。316L不锈钢表面镀2—5μmTiC,并经化学热处理在TiC中生成防氚渗透阻挡层后,在下游面用1keV能量的H+离子辐照,在359oC下氚在镀膜中的渗透率比没受辐照的样品的低55.7%。在316L不锈钢表面镀有TiN+TiC的材料中,其涂层的下游面用能量为28keV的H+离子辐照后,在326oC下氚在其中的渗透率比没受辐照的高了2倍。  相似文献   

11.
Acoustic cavitation plays an important role in enhancing the reaction rate of chemical processes in sonochemical systems. However, quantification of cavitation intensity in sonochemical systems is generally limited to low frequency systems. In this study, an empirical determination of cavitation yield in high frequency ultrasound systems was performed by measuring the amount of iodine liberated from the oxidation of potassium iodide (KI) solution at 1.7 and 2.4 MHz. Experiments for determining cavitation were carried out at various solute (KI) concentrations under constant temperature, obtained by direct cooling of the solution and variable temperature conditions, in the absence of external cooling. Cavitation yield measurements, reported in this work, extend previously reported results and lend credence to the two step reaction pathway in high frequency systems. Additionally, the concentration of KI and temperature affect the cavitation yield of a system such that the iodine production is proportional to both conditions. It is proposed that direct cooling of sonicated KI solution may be advantageous for optimization of cavitation intensity in high frequency sonochemical reactors.  相似文献   

12.
Fricke reaction, KI oxidation and decomposition of porphyrin derivatives by use of seven types of sonochemical apparatus in four different laboratories were examined in the range of frequency of 19.5 kHz to 1.2 MHz. The ultrasonic energy dissipated into an apparatus was determined also by calorimetry. Sonochemical efficiency of Fricke reaction and KI oxidation was defined as the number of reacted molecule per unit ultrasonic energy. The sonochemical efficiency is independent of experimental conditions such as the shape of sample cell and irradiation instruments, but depends on the ultrasonic frequency. We propose the KI oxidation dosimetry using 0.1 moldm(-3) KI solution as a standard method to calibrate the sonochemical efficiency of an individual reaction system.  相似文献   

13.
Recent advances in sonodynamic approach to cancer therapy   总被引:12,自引:0,他引:12  
Chemical agents such as porphyrins were found to be activated by ultrasound, producing significant antitumor effects. Hematoporphyrin (Hp) enhanced ultrasonically induced damage on sarcoma cells and shown a synergistic inhibitory effect on the tumor growth in combination with ultrasound at 2 MHz. Recently, other types of porphyrins such as protoporphyrin were also found to have such sonodynamic activities. Furthermore, it was found that sonochemical reactions can be greatly accelerated by superimposing the second harmonic onto the fundamental. The highest rate of iodine release from aqueous iodide was obtained at an acoustic intensity ratio between 1 MHz and 2 MHz of 1:1 while either one of the frequency components alone could not induce significant iodine release at the same total acoustic intensity. Second-harmonic superimposition in combination with sonodynamically active antitumor agents may have the potential for selective tumor treatment.  相似文献   

14.
The generation of cavitation-free radicals through evanescent electric field and bulk-streaming was reported when micro-volumes of a liquid were subjected to 10 MHz surface acoustic waves (SAW) on a piezoelectric substrate [Rezk et al., J. Phys. Chem. Lett. 2020, 11, 4655–4661; Rezk et al., Adv. Sci. 2021, 8, 2001983]. In the current study, we have tested a similar hypothesis with PZT-based ultrasonic units (760 kHz and 2 MHz) with varying dissolved gas concentrations, by sonochemiluminescence measurement and iodide dosimetry, to correlate radical generation with dissolved gas concentrations. The dissolved gas concentration was adjusted by controlling the over-head gas pressure. Our study reveals that there is a strong correlation between sonochemical activity and dissolved gas concentration, with negligible sonochemical activity at near-vacuum conditions. We therefore conclude that radical generation is dominated by acoustic cavitation in conventional PZT-based ultrasonic reactors, regardless of the excitation frequency.  相似文献   

15.
This paper describes the application of a novel broadband acoustic sensor to evaluating the acoustic emissions from cavitation produced by a typical commercial 20 kHz sonochemical horn processor. Investigations of the reproducibility of the processor, and of the variation in cavitation emissions as a function of output setting and sensor location are described, and resulting trends discussed in terms of the broadband integrated power in the megahertz frequency range. Companion studies with a conventional membrane hydrophone have illustrated for the first time that cavitation emissions produced by a sonochemical horn processor can extend to frequencies beyond 20 MHz, and the sensor shows that significant nonlinearity can be seen in measured cavitation activity with increasing nominal output power.  相似文献   

16.
刘岩  冯双青 《应用声学》2000,19(3):33-34
采用频率为1.8MHz,声强为1-5W/cm2的超声波引发水中的空化效应,通过采用吡啶溶液作为HO2自由基捕获剂,测出了实验条件下空化水中HO2自由基的浓度水平为10-5M。  相似文献   

17.
The sonochemical efficiency of a cylindrical sonochemical reactor has been investigated as a function of frequency and liquid height. The irradiation frequencies were 45, 129, 231 and 490 kHz. The liquid height was varied from 10 to 700 mm. The sonochemical efficiency of the cylindrical reactor was evaluated by potassium iodide (KI) dosimetry and calorimetry. In our study, the sonochemical efficiency depended on the frequency and liquid height; further, the plots of sonochemical efficiency against liquid height exhibit one or two peaks for each frequency. The sonochemical efficiency up to the first peak increased monotonically with the logarithm of the frequency, and the liquid height for the first peak was inversely proportional to the frequency. From these results, the optimum frequency for a sonochemical reactor can be determined if the liquid height is specified for scale-up of the sonochemical reactor.  相似文献   

18.
The ultrasonic reactor with dual frequency was used and the effect of frequency on the fluorescence intensity of terephthalate ion was experimentally investigated in the frequency range from 176 to 635 kHz. The sonochemical reaction fields were visualized by using sonochemical luminescence of luminol solution. Compared with the fluorescence intensity of terephthalate ion for single frequency, the fluorescence intensity for dual frequency increased. The fluorescence intensity ratio of dual frequency to single frequency had maximum value when the frequency of transducer attached at the bottom wall was comparable in magnitude to that at the side wall. In the case of dual frequency, the sonochemical reaction fields became more extensive in the reactor and more intensive around the center of the reactor.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(4):1489-1495
Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range.  相似文献   

20.
The present work deals with application of sonochemical reactors for the degradation of dichlorvos containing wastewaters. The sonochemical reactor used in the work is a simple ultrasonic horn type operating at 20 kHz with a power rating of 270 W. The effect of different operating parameters such as operating pH, temperature and power density on the extent of degradation has been investigated initially followed by intensification studies using additives such as hydrogen peroxide, Fenton's reagent and CCl(4). It has been observed that low frequency sonochemical reactors can be effectively used for treatment of pesticide wastewaters and acidic conditions and optimum values of temperature and power dissipation favors the degradation of dichlorvos. The efficacy of sonochemical reactors can be further enhanced by using different additives at optimized loadings. Complete removal of the pesticide at the given loading has been obtained using an optimized combination of ultrasound and Fenton's chemistry. The controlling mechanism for the sonochemical degradation has been confirmed to be the free radical attack based on the studies involving radical scavengers. The novelty of the present work is clearly established as there have been no earlier studies dealing with degradation of dichlorvos pesticide using sonochemical reactors operating at low frequency which offers distinct advantage in terms of cost and the stability of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号