首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对铝粉-空气两相流的燃烧转爆轰(DDT)过程及爆轰波结构进行了实验研究。对铝粉-空气混合物弱点火条件下DDT过程不同阶段的特征进行了分析,实验结果显示混合物经历了缓慢反应压缩阶段、压缩波加速冲击波形成阶段、冲击反应过渡阶段、冲击反应向过压爆轰过渡阶段和爆轰阶段,得到了混合物各阶段的DDT参数,由此进一步分析了DDT浓度的上、下限。在1.4 m爆轰测试段的4个截面的环向上各均匀安装8个传感器,对爆轰波结果进行测试,并对铝粉-空气混合物爆轰波的单头结构进行了分析。  相似文献   

2.
 针对气相爆轰波成长机制研究,采用压力传感器和高速摄影技术,测试了氢氧混合气体在点火后的火焰波、前驱冲击波以及爆轰波的成长变化过程,计算了冲击波过程参数和气体状态参数,分析了火焰加速机制。实验结果表明,APX-RS型高速摄影系统可用于拍摄气相爆轰波的成长历程;氢氧爆轰波的产生是由于湍流火焰和冲击波的相互正反馈作用,导致反应区内多处发生局部爆炸,爆炸波与冲击波相互耦合,最终成长为定常爆轰波。  相似文献   

3.
 介绍了利用氢氧混合气体为原料、以四氯化钛为前驱体、气相爆轰制备纳米二氧化钛粉体的方法。利用XRD衍射结果分析证明,产物为金红石相和锐钛矿相的二氧化钛混晶,其晶粒尺度为纳米量级。通过XRD、SEM、TEM分析可以得出,粒子基本为球形,大部分粒子粒径为10~20 nm,也有少量的100 nm左右的粒子产生。分析后发现,反应发生在爆燃转爆轰的过程中和爆轰管中的湍流现象是导致大粒子产生的主要原因。在对在氢过量和氧过量两种状况下,对爆轰所产生的产物的形貌进行了对比,分析发现两种状况产生纳米二氧化钛粉末粒径分布和形貌并没有太大变化。  相似文献   

4.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对环氧丙烷-空气两相流云雾及环氧丙烷-铝粉-空气三相流云雾的爆燃转爆轰(DDT)过程进行了实验研究。对弱点火条件下多相混和物DDT过程的不同阶段特征进行了分析,对比研究了不同浓度时混和物的燃爆情况。结果表明:浓度为513 g/m3的环氧丙烷-空气混和物及浓度为237和643 g/m3的环氧丙烷-铝粉-空气混和物均能在管道中完成爆燃向爆轰的转变,进入自持爆轰阶段,其胞格尺寸分别为0.28和0.50 m。  相似文献   

5.
脉冲爆轰发动机热射流起爆机理数值分析   总被引:1,自引:0,他引:1  
应用频散可控耗散差分格式,求解具有化学反应项的Euler方程,探讨了热射流起爆可燃混合气缩短DDT过程的物理机制.数值研究模拟了不同条件下的起爆过程,从氢氧链式反应出发详细分析了氢氧爆轰直接起爆的SWACER(能量释放而形成激波或压缩波的相干放大)机制的建立条件,讨论了热射流起爆存在超临界、临界和亚临界三种直接起爆机制.  相似文献   

6.
 针对非定常的气相强爆轰过程,建立了气相爆轰的理论计算模型,结合C-J理论和多方气体物态方程,对乙炔-氧气混合气体的强爆轰参数进行了理论估算,并在激波管中开展了化学计量比的乙炔-氧气混合气体的强爆轰实验。对比研究表明:爆速的理论估算值与实验值符合较好,证实了采用C-J理论估算气相强爆轰参数的可行性,计算数据具有一定的参考价值。  相似文献   

7.
采用具有像增强功能的光谱探测器——增强型电荷耦合器件ICCD和DG535同步控制器,应用激波管技术和光纤光谱方法,由压力传感器监测爆燃转爆轰的过程,在解决了同步控制,防止误触发等问题后,从爆炸激波管的侧窗拍摄到了环氧丙烷由爆燃转变为爆轰时刻的曝光时间为2μs,分辨率达到0·2nm的瞬态发射光谱。对所测光谱进行强度定标后,可直接得到环氧丙烷爆轰时刻的热辐射背景,用黑体辐射公式按照最小二乘法原则对其进行拟合,得到了环氧丙烷的爆轰温度为2416K。此爆轰温度的获得,为进一步分析环氧丙烷爆燃转爆轰过程的微观机理提供了实验数据。  相似文献   

8.
激波管内氢-氧混合气体爆轰温度的测量   总被引:4,自引:0,他引:4       下载免费PDF全文
 以光纤传输光能,用多通道光学高温计,在垂直和平行于爆轰波传播方向上,测量了激波管中氢氧(或含氮)混合气体的爆轰温度。在20~53 kPa压力范围内,进行了六种初始压力氢氧混合气体的爆轰,分别测出横向温度和纵向温度;这两种温度在实验测量的误差范围内是一致的,并与正常爆轰的理论值符合得相当好。  相似文献   

9.
涡轮导向器对旋转爆轰波传播特性影响的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究涡轮导向器对旋转爆轰波传播特性的影响,以氢气为燃料,空气为氧化剂,在不同当量比下开展了实验研究.基于高频压力传感器及静态压力传感器的信号,详细分析了带涡轮导向器的旋转爆轰燃烧室的工作模式以及涡轮导向器对非均匀不稳定爆轰产物的影响.实验结果表明:在当量比较低时,爆轰燃烧室以快速爆燃模式工作;逐渐增大当量比,爆轰燃烧室开始以不稳定旋转爆轰模式工作;继续增大当量比,爆轰燃烧室以稳定旋转爆轰模式工作,且旋转爆轰波的传播速度和稳定性均随当量比的增大逐渐提高.爆轰波下游的斜激波与涡轮导向器相互作用,涡轮导向器对压力振荡的幅值具有明显的抑制作用,但对压力振荡频率的影响较小.随着当量比的增大,涡轮导向器上下游的静压均同时增大,经过涡轮导向器的作用,涡轮下游静压明显降低.  相似文献   

10.
李诗尧  于明 《物理学报》2018,67(21):214704-214704
基于固体炸药爆轰过程中化学反应混合区内的固相反应物与气相生成物处于力学平衡状态及热学非平衡状态的事实,提出一种考虑热学非平衡效应的反应流动模型来描述固体炸药的爆轰流动现象.该爆轰流动模型的主要特点是,在反应混合物Euler方程和固相反应物质量守恒方程的基础上,通过附加一套关于固相反应物的组分物理量的流动控制方程来表达固相反应物与气相生成物之间的热学非平衡效应.根据反应混合区内固相反应物与气相生成物这两种化学组分保持各自内能守恒的混合规则,并借助它们具有压力相等的性质以及满足体积分数总和为1的条件,推导获得的附加方程有:固相反应物的内能演化方程、体积分数演化方程及反应混合物的压力演化方程.这样,建立的爆轰模型包括:反应混合物的质量守恒方程、动量守恒方程、总能量守恒方程、压力演化方程,以及固相反应物的质量守恒方程、内能演化方程、体积分数演化方程.对所获得的爆轰模型方程组采用一个时空二阶精度的有限体积法进行数值求解,典型爆轰问题算例结果表明本文提出的固体炸药爆轰模型是合理的.  相似文献   

11.
瞬态光谱法确定环氧丙烷DDT过程中起主导作用的基团   总被引:1,自引:1,他引:0  
解决了燃料爆燃转爆轰(DDT)过程初始阶段弱辐射瞬态光谱测试问题、反应中间产物辐射相对强度定标问题和瞬态光谱测试系统同步控制问题后,从爆炸激波管的6个不同侧窗,拍摄了环氧丙烷DDT过程不同距离处的曝光时间为2~8 μs、分辨率达到0.2 nm的瞬态发射光谱。对所测光谱进行相对强度定标后,得到了主要反应中间产物光辐射强度随燃烧波阵面传播距离的变化曲线, 此曲线反映出DDT过程中反应中间产物的发展过程和其相应的浓度变化。结果显示,在爆燃阶段,燃烧气体的化学反应速率平缓增加,反应中间产物浓度逐渐增大;但在爆燃转爆轰的瞬间,反应急剧增快,反应中间产物的浓度突跃式地成倍增大。其中CO分子和CHO,OH自由基的浓度增幅显著大于其他反应产物,表明这几个基团是环氧丙烷爆燃转爆轰过程中起主导作用的重要基团。  相似文献   

12.
Performance enhancement of a pulse detonation rocket engine   总被引:4,自引:0,他引:4  
Utilizing liquid kerosene as the fuel, oxygen as oxidizer and nitrogen as purge gas, a series of multi-cycle detonation experiments was conducted to improve the performance of pulse detonation rocket engine (PDRE). In order to improve the performance of the engine, it is crucial to develop an effective DDT enhancement device with less flow loss and higher survival in hostile detonation tube; therefore, three spiraling internal grooves were tested. The three spiraling internal grooves were semicircle, square and inversed-triangle grooves, respectively. The results showed that the spiraling internal groove can effectively enhance DDT and prolong the operation time of PDRE. The effect of groove shape on thrust enhancement of PDRE and the optimum length of spiraling groove were then investigated. To improve the detonability of liquid kerosene and prolong the durability of PDRE, experiments on the kerosene preheating based on active cooling were conducted. The results demonstrated that with the aid of fuel preheating, the detonation initiation time for liquid kerosene was noticeably reduced and a fully-developed detonation wave was achieved in the position away from igniter 4.67 times the diameter of the detonation tube. By adding the additive to liquid kerosene, the detonation initiation time from 0.75 ms decreased to 0.34 ms and the detonability of fuel was dramatically improved. Finally, experiments were conducted to investigate the effects of the operating frequency on the detonation parameters, the fill fraction and PDRE performance. The results indicated that detonation pressure and temperature vary with the operating frequency of PDRE, and the fill fraction has a significant influence on the specific impulse of PDRE. With the strategy of partial filling in detonation tube, the specific impulse can be remarkably enhanced.  相似文献   

13.
Modeling aluminum (Al) dust detonation is difficult due to uncertainties in the product species and fractions. Recent experiments indicate both gaseous and solid alumina may appear in the detonation product, but only the gaseous one was considered before. To resolve this drawback, we study the effects of different product phases on the detonation parameters with the hybrid combustion model proposed recently. Numerical results demonstrate that the assumption of gaseous product induces high velocity and pressure, while the assumption of solid product induces low velocity and pressure. To clarify how close-to-experiment results have been obtained with one phase assumption, we revisit previous studies and analyze the models. The inconsistency between the product phase and heat release is found, and then one model with variable heat release dependent on the product phase is proposed. Then simulations with both the gaseous and solid products are carried out, and results reveal the necessity of establishing a relationship between the heat release and reaction products.  相似文献   

14.
An experimental investigation of the onset of detonation   总被引:2,自引:0,他引:2  
An experimental configuration is devised in the present investigation whereby the condition at the final phase of the deflagration to detonation transition (DDT) process can be generated reproducibly by reflecting a CJ detonation from a perforated plate. The detonation products are transmitted downstream through the plate, generating a turbulent reaction front that mixes with the unburned mixture and that drives a precursor shock ahead of it at a strength of about M = 3. The gasdynamic condition that is generated downstream of the perforated plate closely corresponds to that just prior to the onset of detonation in the DDT process. The turbulence parameters can be controlled by varying the geometry of the perforated plate; thus, the condition leading to the onset of detonation can be experimentally investigated. A one-dimensional theoretical analysis of the steady wave processes was first performed, and the experimental results show good agreement, indicating that the present experimental condition can be theoretically described. Two different detonation tube geometries (one with a square cross-section of 300 mm by 300 mm and the other with a circular cross-section of 150 mm) are used to demonstrate the independence of the tube diameter at the critical condition for DDT. Perforated plates with different hole diameters (d = 8, 15, and 25 mm) were tested, and the hole spacing to hole diameter ratio was maintained at 0.5. Different hydrogen–air mixtures were tested at normal temperature and pressure. For the plate with 8 mm holes, the onset of detonation is never observed. For the plate with 15 mm holes, successful initiation of a detonation is achieved for 0.8 < < 1.75 in both detonation tubes. For the plate with 25 mm holes, detonation initiation is observed for 0.7 < < 2.1 in the square detonation tube and for 0.8 < < 1.6 in the smaller circular detonation tube.  相似文献   

15.
考虑几何结构参数对激波聚焦触发爆轰波的复杂影响,对H2/Air预混气的环形射流激波聚焦起爆现象开展了数值模拟研究,详细分析了不同隔板深度条件下的激波聚焦过程、流场演化特征以及爆轰波参数变化规律。研究结果表明,凹腔内激波聚焦诱导的局部爆炸以及隔板前缘处射流形成"卷吸涡"是引起爆轰波触发的两个重要机制,而隔板深度是影响环形射流激波聚焦起爆性能的关键因素。随着隔板深度的增加,凹腔内激波聚焦的强度逐步增强,回传的能量损失有所减小,进而导致爆燃转爆轰的距离与时间显著缩短。此外,当隔板深度由1 mm逐渐增加至3 mm时,爆轰波自持传播稳定性呈现出先降低后升高的变化趋势,产生这一现象的主要原因是爆轰波强度与三波点运动的相互作用。  相似文献   

16.
Numerical simulation based on the Euler equation and one-step reaction model is carried out to investigate the process of deflagration to detonation transition (DDT) occurring in a straight duct. The numerical method used includes a high resolution fifth-order weighted essentially non-oscillatory (WENO) scheme for spatial discretization, coupled with a third order total variation diminishing Runge-Kutta time stepping method. In particular, effect of energy release on the DDT process is studied. The model parameters used are the heat release at $q=50, 30, 25, 20, 15, 10$ and $5$, the specific heat ratio at $1.2$, and the activation temperature at $Ti=15$, respectively. For all the cases, the initial energy in the spark is about the same compared to the detonation energy at the Chapman-Jouguet (CJ) state. It is found from the simulation that the DDT occurrence strongly depends on the magnitude of the energy release. The run-up distance of DDT occurrence decreases with the increase of the energy release for $q$=50~20, and increases with the increase of the energy release for $q$=20~5. This phenomenon is found to be in agreement with the analysis of mathematical stability theory. It is suggested that the factors to strengthen the DDT would make the detonation more stable, and vice versa. Finally, it is concluded from the simulations that the interaction of the shock wave and the flame front is the main reason for leading to DDT.  相似文献   

17.
The coupled effect of wall heat loss and viscosity friction on flame propagation and deflagration to detonation transition(DDT) in micro-scale channel is investigated by high-resolution numerical simulations.The results show that when the heat loss at walls is considered, the oscillating flame presents a reciprocating motion of the flame front.The channel width and Boit number are varied to understand the effect of heat loss on the oscillating flame and DDT.It is found that the oscillating propagation is determined by the competition between wall heat loss and viscous friction.The flame retreat is led by the adverse pressure gradient caused by thermal contraction, while it is inhibited by the viscous effects of wall friction and flame boundary layer.The adverse pressure gradient formed in front of a flame, caused by the heat loss and thermal contraction, is the main reason for the flame retreat.Furthermore, the oscillating flame can develop to a detonation due to the pressure rise by thermal expansion and wall friction.The transition to detonation depends non-monotonically on the channel width.  相似文献   

18.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号