首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种非线性动力学建模仿真发声系统,分类息肉和麻痹喉声源的方法,为声带疾病分类时参数选择提供了依据。首先介绍息肉和麻痹声带力学模型,耦合声门气流产生喉声源,求取喉声源频率(基频)、基频微扰;提出用庞加莱截面,分岔图对模型振动进行非线性分析;改变声带病理参数及声门下压,分析频率参数和混沌参数李雅普诺夫指数的变化。仿真实验结果表明,声带麻痹减小了发声基频,且只在一定压力范围内出现混沌振荡;息肉声带的混沌则分布在整个压力范围内。根据最大李雅普诺夫指数随声门下压变化的差异性分布,有助于识别并分类声带息肉和声带麻痹。   相似文献   

2.
A nonlinear model was proposed to study chaotic vibrations of vocal folds with a unilateral vocal polyp. The model study found that the vocal polyp affected glottal closure and caused aperiodic vocal fold vibrations. Using nonlinear dynamic methods, aperiodic vibrations of the vocal fold model with a polyp were attributed to low-dimensional chaos. Bifurcation diagrams showed that vocal polyp size, stiffness, and damping had important effects on vocal fold vibrations. An increase in polyp size tended to induce subharmonic patterns and chaos. This study provides a theoretical basis to model aperiodic vibrations of vocal folds with a laryngeal mass.  相似文献   

3.
4.
Thyroplasty type I is one of several surgical treatments in which improving the voice of unilateral vocal fold paralysis is the ultimate objective. The goal of the surgery is the medialization of the paralyzed vocal fold. The purpose of this study is to evaluate the effectiveness of thyroplasty type I through acoustical analysis, aerodynamic measures, and quantitative videostroboscopic measurements. We report on 20 patients with unilateral vocal cord paralysis who underwent thyroplasty type I. We performed preoperative and postoperative video image analysis (normalized glottal gap area) and computer-assisted voice analysis (fundamental frequency, jitter, shimmer, noise-to-harmonic ratio, mean phonation time, mean flow rate, mean subglottic pressure) in all patients. The glottal gap was significantly reduced after thyroplasty type I. Postoperative voice quality was characterized by an improved pitch and amplitude pertubation (jitter and shimmer), phonation time (mean phonation time), and subglottic pressure (mean subglottic pressure). Thyroplasty type I is an effective method for regaining glottal closure and vocal function.  相似文献   

5.
Chaos has been observed in turbulence, chemical reactions, nonlinear circuits, the solar system, biological populations, and seems to be an essential aspect of most physical systems. Chaos may also be central to the interpretation of irregularity in voice disorders. This presentation will summarize the results from a series of our recent studies. These studies have demonstrated the prescence of chaos in computer models of vocal folds, experiments with excised larynges, and human voices. Methods based on nonlinear dynamics can be used to quantify chaos and irregularity in vocal fold vibration. Studies have suggested that disordered voices from laryngeal pathologies such as laryngeal paralysis, vocal polyps, and vocal nodules might exhibit chaotic behaviors. Conventional parameters, such as jitter and shimmer, may be unreliable for analysis of periodic and chaotic voice signals. Nonlinear dynamic methods, however, have differentiated between normal and pathological phonations and can describe the aperiodic or chaotic voice. Chaos theory and nonlinear dynamics can enchance our understanding and therefore our assessment of pathological phonation.  相似文献   

6.
The purpose was to determine the clinical value of a multiparametric objective voice evaluation protocol including acoustic and aerodynamic parameters measured mainly on a sustained /a/. This was done by comparison with perceptual analysis of continuous speech by a jury composed of 6 experienced listeners. Voice samples (continuous speech) from 63 male patients with dysphonia and 21 control subjects with normal voices were recorded and assesed by a jury of listeners. The jury was instructed to classify voice samples according to the G (overall dysphonia) component of the GRBAS score on a 4-point scale ranging from 0 for normal to 3 for severe dysphonia. Objective parameters were recorded on an EVA® workstation. As usual with this type of system, parameters were measured mainly on a sustained /a/. Measured parameters included fundamental frequency (F0), intensity, jitter, shimmer, signal-to-noise ratio, Lyapunov coefficient (LC), oral airflow (OAF), maximum phonatory time (MPT), and vocal range (range). Estimated subglottic pressure (ESGP) was determined on a series of /pa/. Discriminant analysis was performed to detect correlation between jury classification and combinations of parameters. Results showed that a nonlinear combination of only six parameters (range, LC, ESGP, MPT, signal-to-noise ratio, and F0) allowed 86% concordance with jury classification. Discussion deals with the relative importance of the different objective parameters for discriminant analysis. Special emphasis is placed on two measurements rarely made in routine clinical workup, i.e., estimated subglottic pressure and Lyapunov coefficient.  相似文献   

7.
Well-known multimass models of vocal folds are useful to describe main behavior observed in human voicing but their principle of functioning, based on harmonic oscillation, may appear complex. This work is designed to show that a simple one-mass model ruled by laws of relaxation oscillation can also depict main behavior of glottis dynamic. Theory of relaxation oscillation is detailed. A relaxation oscillation model is assessed through a numerical simulation using conventional values for tissue characteristics and subglottal pressure. As expected, raising the mass decreases the fundamental frequency and increases the amplitude of vocal fold vibration: for a mass ranging from 0.01 to 0.4 g, F0 decreased from 297.5 to 42.5 Hz and vibrational amplitude increased from 1.26 to 3.25 mm (for stiffness k=10Nm(-1), damping r=0.015 N s m(-1), and subglottal pressure=1 kPa). Stiffness value has the opposite effect. The subglottal pressure controls the fundamental frequency with a rate ranging from 20 to 50 Hz/kPa. The vibrational amplitude is also controlled linearly by subglottal pressure from 0.22 to 0.26 mm/kPa. The range of phonation threshold pressure (PTP) is close to the values currently proposed, that is, 0.1 to 1 kPa and varies with the fundamental frequency. The relaxation oscillator is a simple and useful tool for modeling vocal fold vibration.  相似文献   

8.
Simulation of glottal volume flow and vocal fold tissue movement was accomplished by numerical solution of a time-dependent boundary value problem, in which nonuniform, orthotropic, linear, incompressible vocal fold tissue media were surrounded by irregularly shaped boundaries, which were either fixed or subject to aerodynamic stresses. Spatial nonuniformity of the tissues was of the layered type, including a mucosal layer, a ligamental layer, and muscular layers. Orthotropy was required to stabilized the vocal folds longitudinally and to accomodate large variations in muscular stress. Incompressibility and vertical motions at the golttis played an important role in producing and sustaining phonation. A nominal configuration for male fundamental speaking pitches was selected, and the regulation of fundamental frequency, intensity, average volume flow, and vocal efficiency was investigated in terms of variations around this nominal configuration. Parameters which were varied consisted of geometrical factors such as length, thickness, and depth, factors for shaping the glottis, as well as tissue elasticities, tissue viscosities, and subglottal pressure. Since nonlinear stress-strain properties were not included, subglottal pressure did not produce a pronounced effect upon fundamental frequency under these somewhat edealized conditions F0 rasing correlated strongly with increased tension in the ligament, and somewhat with increasing tension in the vocalis. F0 lowering correlated with increase in vocal fold length when the tensions were held constant, but not with increase in vocal fold thickness. Vocal intensity and efficiency are shown to have local maxima as the configurational parameters are varied one at a time. It appears that oral acoustic power output and vocal efficiency can be maximized by proper adjustments of longitudinal tension of nonmuscular (mucosal and ligamental) tissue layers in relation to muscular layers. Quantitative verification of the "body-cover" theory is therefore suggested, and several further implications with regard to control of the human larynx are considered.  相似文献   

9.
In this paper, we apply an iterative parameter adaption scheme based on chaos synchronization to estimate system parameters of the asymmetric vocal folds from glottal area time series. The original asymmetric vocal-fold system associated with recurrent laryngeal paralysis shows chaotic vibrations with positive Lyapunov exponents. Aperiodic glottal area time series from the original system will be applied as the feedback variable coupling the simulative and the original vocal-fold systems. The parameter adaption technique based on chaos synchronization is employed to manipulate the simulative system parameters. The chaotic vibrations, system parameters, and the bifurcation diagram of the original vocal-fold system can be exactly reproduced in the simulative system, and the two chaotic systems can be synchronized. Furthermore, the effects of noise, sampling rate, and equation difference due to nonlinear spring terms on vocal-fold parameter estimations are investigated. Despite large noise perturbations, large equation differences, and low sampling rate, the parameter adaption scheme can effectively estimate the original vocal-fold system parameters. This study provides a theoretical base to apply chaos synchronization to estimate the vocal-fold system parameters from the glottal area data and show its potential application in laryngeal physiology.  相似文献   

10.
The fundamental frequency of vocal fold oscillation (F(0)) is controlled by laryngeal mechanics and aerodynamic properties. F(0) change per unit change of transglottal pressure (dF/dP) using a shutter valve has been studied and found to have nonlinear, V-shaped relationship with F(0). On the other hand, the vocal tract is also known to affect vocal fold oscillation. This study examined the effect of artificially lengthened vocal tract length on dF/dP. dF/dP was measured in six men using two mouthpieces of different lengths. Results: The dF/dP graph for the longer vocal tract was shifted leftward relative to the shorter one. Conclusion: Using the one-mass model, the nadir of the "V" on the dF/dP graph was strongly influenced by the resonance around the first formant frequency. However, a more precise model is needed to account for the effects of viscosity and turbulence.  相似文献   

11.
A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.  相似文献   

12.
The fundamental frequency (F0) for the habitual pitch (F0HAB), F0 for the lowest physiological tone (F0L), F0 for the highest physiological tone (F0H), F0 range of phonation (F0 Rg), sound pressure level (SPL) for habitual loudness (SPLHAB), SPL for the softest tone (SPLS), SPL for the loudest tone (SPLL), and SPL range of phonation (SPL Rg) were measured in 40 normal adult subjects and 1,563 voice patients with varying diseases. F0H, F0 Rg, SPLL, and SPL Rg were decreased in many disease groups. F0HAB and F0L varied. SPLHAB and SPLS were increased in some disease groups. F0-related parameters reflected effects of treatments in the cases with polyp, Reinke's edema, epithelial hyperplasia, carcinoma, and paralysis. Effects of treatments were manifested in SPL-related parameters in the cases with nodule, polyp, carcinoma, and paralysis.  相似文献   

13.
Nineteen trained soprano singers aged 18–30 years vocalized tasks designed to assess average speaking fundamental frequency (SFF) during spontaneous speaking and reading. Vocal range and perceptual characteristics while singing with low intensity and high frequency were also assessed, and subjects completed a survey of vocal habits/symptoms. Recorded signals were digitized prior to being analyzed for SFF using the Kay Computerized Speech Lab program. Subjects were assigned to a normal voice or impaired voice group based on ratings of perceptual tasks and survey results. Data analysis showed group differences in mean SFF, no differences in vocal range, higher mean SFF values for reading than speaking, and 58% ability to perceive speaking in low pitch. The role of speaking in too low pitch as causal for vocal symptoms and need for voice classification differentiation in vocal performance studies are discussed.  相似文献   

14.
The elastic as well as time-dependent mechanical response of the vocal fold cover (epithelium and superficial layer of the lamina propria) under tension is one key variable in regulating the fundamental frequency. This study examines the hyperelastic and time-dependent tensile deformation behavior of a group of human vocal fold cover specimens (six male and five female). The primary goal is to formulate a constitutive model that could describe empirical trends in speaking fundamental frequency with reasonable confidence. The constitutive model for the tissue mechanical behavior consists of a hyperelastic equilibrium network in parallel with an inelastic, time-dependent network and is combined with the ideal string model for phonation. Results showed that hyperelastic and time-dependent parameters of the constitutive model can be related to observed age-related and gender-related differences in speaking fundamental frequency. The implications of these findings on fundamental frequency regulation are described. Limitations of the current constitutive model are discussed.  相似文献   

15.
The relationship of lung pressure, fundamental frequency, peak airflow, open quotient, and maximal flow declination rate to vocal intensity for a normal speaking, young male control group and an elderly male group was investigated. The control group consisted of 17 healthy male subjects with a mean age of 30 years and the elderly group consisted of 11 healthy male subjects with a mean age of 77 years. Data were collected at three levels of vocal intensity: soft, comfortable, and loud, corresponding to 25%, 50%, and 75% of dynamic range, respectively. Phonational threshold pressure and lung pressure were obtained using the intraoral technique. The oral airflow waveform was inverse filtered to provide an approximation to the glottal airflow waveform from which measures of fundamental frequency, peak airflow, open quotient, and maximal flow declination rate were determined. Excess lung pressure was calculated as lung pressure minus estimated phonational threshold pressure. The results show for both groups an increase in sound pressure level across the conditions, with corresponding increases in lung pressure, excess lung pressure, fundamental frequency, peak airflow, and maximal flow declination rate. Open quotient decreased with increasing vocal intensity. Lung pressure, sound pressure level, and peak airflow were all found to be significantly greater for the control group than for the elderly group at each condition. Open quotient was found to be significantly lower in the control group than in the elderly group at each condition. No significant difference was observed for excess lung pressure, phonational threshold pressure, fundamental frequency, or maximal flow declination rate between the two groups. These results show that a difference in vocal intensity does exist between young and elderly voices and that this difference is the result of differences in lung pressure, peak airflow, and open quotient.  相似文献   

16.
The purpose of the present study was to examine the effect of prolonged loud reading, intended to induce fatigue, on vocal function in adults with unilateral vocal fold paralysis (UVFP). Subjects were 20 adults, 37–60 years old, with UVFP secondary to recurrent laryngeal nerve paralysis. Subjective ratings and instrumental measures of vocal function were obtained before and after reading. Statistical analysis revealed subjects rated their vocal quality and physical effort for voicing more severely following prolonged loud reading, whereas expert raters did not detect a significant perceptual difference in vocal quality. Reading fundamental frequency (Fo) was significantly increased following prolonged loud reading, as were mean airflow rates at all pitch conditions. Maximum phonation times for comfort and low pitches significantly decreased during posttests. Multiple regression analyses revealed significant associations between ratings of posttest physical effort and select posttest measures. Interpretation of results indicates the prolonged loud reading task was successful in vocally fatiguing most of the UVFP subjects. Key physiologic correlates of vocal fatigue, in individuals with UVFP, include further reduction of glottic efficiency, resulting in decreased regulation of glottic airflow and a temporary destabilization of speaking fundamental frequency.  相似文献   

17.
18.
The adult male Diana monkeys (Cercopithecus diana) produce predator-specific alarm calls in response to two of their predators, the crowned eagles and the leopards. The acoustic structure of these alarm calls is remarkable for a number of theoretical and empirical reasons. First, although pulsed phonation has been described in a variety of mammalian vocalizations, very little is known about the underlying production mechanism. Second, Diana monkey alarm calls are based almost exclusively on this vocal production mechanism to an extent that has never been documented in mammalian vocal behavior. Finally, the Diana monkeys' pulsed phonation strongly resembles the pulse register in human speech, where fundamental frequency is mainly controlled by subglottal pressure. Here, we report the results of a detailed acoustic analysis to investigate the production mechanism of Diana monkey alarm calls. Within calls, we found a positive correlation between the fundamental frequency and the pulse amplitude, suggesting that both humans and monkeys control fundamental frequency by subglottal pressure. While in humans pulsed phonation is usually considered pathological or artificial, male Diana monkeys rely exclusively on pulsed phonation, suggesting a functional adaptation. Moreover, we were unable to document any nonlinear phenomena, despite the fact that they occur frequently in the vocal repertoire of humans and nonhumans, further suggesting that the very robust Diana monkey pulse production mechanism has evolved for a particular functional purpose. We discuss the implications of these findings for the structural evolution of Diana monkey alarm calls and suggest that the restricted variability in fundamental frequency and robustness of the source signal gave rise to the formant patterns observed in Diana monkey alarm calls, used to convey predator information.  相似文献   

19.
Experimental data from an excised larynx are analyzed in the light of nonlinear dynamics. The excised larynx provides an experimental framework that enables artificial control and direct observation of the vocal fold vibrations. Of particular interest in this experiment is the coexistence of two distinct vibration patterns, which closely resemble chest and falsetto registers of the human voice. Abrupt transitions between the two registers are typically accompanied by irregular vibrations. Two approaches are presented for the modeling of the excised larynx experiment; one is the nonlinear predictive modeling of the experimental time series and the other is the biomechanical modeling (three-mass model) that takes into account basic mechanisms of the vocal fold vibrations. The two approaches show that the chest and falsetto vibrations correspond to two coexisting limit cycles, which jump to each other with a change in the bifurcation parameter. Irregular vibrations observed at the register jumps are due to chaos that exists near the two limit cycles. This provides an alternative mechanism to generate chaotic vibrations in excised larynx experiment, which is different from the conventionally known mechanisms such as strong asymmetry between the left and right vocal folds or excessively high subglottal pressure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号