首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is found that, under certain conditions, C60 fullerite crystals can be cleaved along cleavage planes that are close-packed planes of the {111} type. Rigid gas-phase grown crystals exhibit good cleavage properties. In experiments with active compressive deformation, these crystals showed a high yield point τy = 2.65 MPa, a “parabolic” stress-strain curve, and brittle fracture after attaining a shear strain of about 8%. The fracture surface was clearly seen to have fragments parallel to the (111) plane. Typical microstructures observed in the cleavage plane are discussed: crystallographic cleavage steps, an indentation pattern, and a dislocation prick rosette. The fact that the activation volume V ? 60b3 is small (b is the Burgers vector of a dislocation) and strain-independent indicates the Peierls character of fullerite deformation or dislocation drag in a dense network of local defects.  相似文献   

2.
The dependences of the path of leading dislocations in indentation rosette rays on the load, the loading time, and the indentation temperature in the range 260 < T ≤ 373 K were studied for C60 fullerite crystals. The dislocation mobility parameters are estimated: the exponent m characterizing the stress dependence of the dislocation velocity depends on the structural perfection of the crystal and ranges from 2.3 to 24.5, the activation energy for dislocation motion ΔH 0 ? (0.4–0.5) eV, and the velocity of leading dislocations in indentation rosette rays v l ? 10?5?10?4 cm/s. The data from micro-and macromechanical experiments are shown to agree with each other. The dislocation mobility is assumed to be controlled by the dislocation interaction with local barriers.  相似文献   

3.
Thin films of Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 alloy and have been deposited on precleaned glass substrate by thermal evaporation technique in a vacuum of 2?×?10?6 Torr. The structural study was carried out by X-ray diffractometer, which shows that the films are polycrystalline in nature. The grain size, microstrain and dislocation density were determined. The Seebeck coefficient was determined as the ratio of the potential difference across the films to the temperature difference. The power factor for the (Sb2Te3)70 (Bi2Te3)30 and (Sb2Te3) is found to be 19.602 and 1.066 of the film of thickness 1,500 Å, respectively. The Van der-Pauw technique was used to measure the Hall coefficient at room temperature. The carrier concentration was calculated and the results were discussed.  相似文献   

4.
The creep phenomenon observed in ordered alloys and intermetallics with the L12-superlattice structure are considered. A mathematical model that accounts for the superlattice dislocation locking mechanisms at work during creep of the single crystals is constructed. Superposition of the thermal activation mechanisms of the superlattice dislocation motion and locking is shown to give rise to an anomalous temperature dependence of the creep rate. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 28–35, September, 2005.  相似文献   

5.
The behavior of material constants in ferroelectric Ba0.8Sr0.2TiO3 thin films is studied depending on the misfit strain at room temperature in the context of nonlinear thermodynamic potential of the phenomenological theory. Some constants are found to undergo drastic changes with the alternating strain at the interfaces. The gathered results allow one to evaluate the material constants for a specific film and to outline the direction in searching the ways to synthesize films with the needed properties.  相似文献   

6.
The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)0.3+(Sr2AlTaO6)0.7)(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.  相似文献   

7.
The structural evolution of Cu60Zr20Ti20 bulk metallic glass during rolling at different strain rates and cryogenic temperature was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy (HRTEM). It is revealed that the deformation-induced transformation is strongly dependent on the strain rate. At the lowest experimental strain rate of 1.0×10−4 s−1, no phase transformation occurs until the highest deformation degree reaches 95%. In a strain rate range of 5.0×10−4−5.0×10−2 s−1, phase separation occurs in a high deformation degree. As the strain rate reaches 5.0×10−1 s−1, phase separation and nanocrystallization concur. The critical deformation degree for occurrence of phase transformation decreases with the strain rate increasing. Supported by the National Natural Science Foundation of China (Grant No. 50471016)  相似文献   

8.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

9.
The effect of multiple rolling at room temperature on the structure and crystallization of the Al85Ni6.1Co2Gd6Si0.9 amorphous alloy has been studied using transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction. The total plastic strain is 33%. It has been shown that the deformation results in the formation of aluminum nanocrystals with the average size that does not exceed 10–15 nm. The nanocrystals are formed in regions of localization of plastic deformation. The deformation decreases the thermal effect of nanocrystallization (∼15%) as compared to the heat release at the first stage of crystallization of the unstrained sample. The morphology, structure, and distribution of precipitates have been investigated. Possible mechanisms of the formation of nanocrystals during the deformation have been discussed.  相似文献   

10.
The evolutions of electronic phase separation in manganites La0.225Pr0.4Ca0.375MnO3 are studied by the specific temperature and magnetic-field cycling experiments. It is found that the electronic phase separation state at low temperature can be tuned substantially by temperature and/or magnetic-field cycles. Surprisingly, the initial more ferromagnetic metallic (FMM) nuclei can impede the growth of these nuclei during the cooling process. It implies that there must coexist more than two phases which take part in the complex first-order phase transitions, and the charge-disordered insulating phase is possible, one of the parent phases transiting into the FMM phase at low temperature. In addition, the accommodation strain is suggested to control the nucleation and growth of FMM domains.  相似文献   

11.
PbZr0.53Ti0.47O3/LaNiO3 (PZT/LNO) hetero-structures have been successfully deposited on MgO, SrTiO3, Al2O3 and Si substrate by chemical solution routes, respectively. The X-ray diffraction measurements show that out-of-plane lattice parameters of PZT increase as increase of thermal expansion coefficient of substrate. Polarization fatigues of Pt/PZT/LNO capacitors are strongly affected by the thermal strain caused by difference of thermal expansion coefficient between PZT and substrate materials. High fatigue resistance of Pt/PZT/LNO can be obtained by using substrate with similar thermal expansion coefficient as PZT. PACS 77.84.Dy; 78.20.Ci; 81.20.Fw  相似文献   

12.
This paper reports on the results of measurements of the internal friction Q?1 and the shear modulus G of Li2B4O7 single crystals along the crystallographic directions [100] and [001] in the temperature range 300–550 K for strain amplitudes of (2–10)×10?5 at infralow frequencies. The anomalies observed in Q?1 and G in the temperature range 390–410 K are due to thermal activation of the mobility of lithium cations and their migration from one energetically equivalent position to another. A jump in the internal friction background is revealed in the vicinity of the Q?1 and G anomalies for the Li2B4O7 crystal. The magnitude of this jump depends on the crystallographic direction.  相似文献   

13.
The effect of externally introduced variable strains on the polarization properties of quantum-well In28Ga72As/GaAs laser radiation at room temperature is studied experimentally and theoretically. An analysis of the polarization effects at various values of the excess of the working current over the threshold is performed. Data on the energy for the splitting of the levels of light and heavy holes in the quantum well of the structure under consideration are obtained. It is experimentally proven that the effectiveness of the action of a variable strain on the polarization twist substantially increases with increasing quantum well width.  相似文献   

14.
The anisotropic magnetoelectric properties of an ytterbium aluminum borate YbAl (BO single crystal having noncentrosymmetric crystal structure (space group R32) are studied, including the orientational, field, and temperature dependences of the polarization in magnetic fields up to 5 T in the temperature range of 2–300 K. It has been shown experimentally for the first time that the symmetry of the observed magnetoelectric effects exactly corresponds to the trigonal structure of the crystal and is characterized by two quadratic magnetoelectric constants. The polarization in the basal plane P a, b is a quadratic function of the field at low fields and reaches 250–300 μC/m2 in a field of 5 T at a temperature of 2 K, almost an order of magnitude exceeding the previously reported values. A theoretical model based on the spin Hamiltonian of the ground Kramers doublet of Yb3+ ions in the crystal field is proposed including magnetoelectric interactions allowed by the symmetry. This model makes it possible to quantitatively describe all observed magnetic and magnetoelectric properties of YbAl3(BO3)4.  相似文献   

15.
Specific features of the magnetic properties and magnetic dynamics of isolated phase separation domains in GdMn2O5 and Gd0.8Ce0.2Mn2O5 have been investigated. These domains represent 1D superlattices consisting of dielectric and conducting layers with the ferromagnetic orientation of their spins. A set of ferromagnetic resonances of separate superlattice layers has been studied. The properties of the 1D superlattices in GdMn2O5 and Gd0.8Ce0.2Mn2O5 are compared with the properties of the previously investigated RMn2O5 (R = Eu, Tb, Er, and Bi) series. The similarity of the properties for all the RMn2O5 compounds with different R ion types is established. Based on the concepts of the magnetic dynamics of ferromagnetic multilayers and properties of semiconductor superlattices, a 1D model of the superlattices in RMn2O5 is built.  相似文献   

16.
Preparation of pure phase CuIn0.75Ga0.25Se2 nanoparticle powder by ball milling technique has been confirmed for the milling time of more than 45 min at 1200 rpm. Formation of shear bands responsible for breakdown of grains and generation of nanostructure during mechanical alloying, dislocation and defects induced due to milling has been studied by High-Resolution Transmission Electron Microscopy (HRTEM) analysis. Deviation in final composition of the products from those of starting materials has been discussed based on low volatilization of Se. Effect of milling time on the phase formation, particle size, and composition has been discussed in detail. Decrease in grain size from 12.44 to 7.96 nm has been observed with the increase in milling time. Mechanically induced self-propagating reaction mechanism which occurred during milling process is also discussed. Nanoparticle precursor was mixed with organic binder material for rheology of mixture to be adjusted for screen printing, and the films are subjected to heat treatment at five different temperatures in nitrogen ambient for 25 min. Average grain size calculated by Scherrer’s formula was almost the same irrespective of temperature. Reproducibility of precursor composition in the deposited films has been discussed in detail.  相似文献   

17.
The temperature dependence of the elongation per unit length for Pb(Mg1/3Nb2/3)O3 crystals unannealed after growth and mechanical treatment is investigated in the course of thermocycling. It is revealed that this dependence deviates from linear behavior at temperatures below 350°C. The observed deviation is characteristic of relaxors, is very small in the first cycle, increases with increasing number n of thermocycles, and reaches saturation at n≥3. In the first cycle, a narrow maximum of the acoustic emission activity is observed in the vicinity of 350°C. In the course of thermocycling, the intensity of this maximum decreases and becomes zero at n>3. For (1?x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals, the dependence of the temperature of this acoustic emission maximum on x exhibits a minimum. It is assumed that the phenomena observed are associated with the phase strain hardening due to local phase transitions occurring in compositionally ordered and polar nanoregions.  相似文献   

18.
A model Hamiltonian for B cation ordering (Sc-Nb(Ta)) in PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3 solid solutions is constructed. The parameters of the model Hamiltonian are determined from the ab initio calculation within the ionic crystal model with allowance made for the deformability and the dipole and quadrupole polarizabilities of the ions. The temperatures of the phase transition due to the ordering of the B cations are calculated by the Monte Carlo method in the mean-field and cluster approximations. The phase transition temperatures calculated by the Monte Carlo method (1920 K for PbSc1/2Ta1/2O3 and 1810 K for PbSc1/2Nb1/2O3) are consistent with the experimental data (1770 and 1450 K, respectively). The thermodynamic properties of the cation ordering are investigated using the Monte Carlo method.  相似文献   

19.
The regular grid generation method was generalized for a 3D region based on the solid mechanics equations that describe deformation of a finite volume. Test calculations of fracture of ceramic composites with inclusions are represented which are based on the developed model of quasi-brittle media with regard to damage accumulation.  相似文献   

20.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号