首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work discusses the successful electrodeposition of Cu/Co multilayers, exhibiting appreciable GMR of 12-14% at room temperature. The effect of individual Cu and Co layers on the magnitude and behavior of GMR has been studied. By varying the thickness of individual layers the field at which saturation in GMR is observed can be controlled. It was observed that for lower thicknesses of Co layer, the saturation fields are reduced below 1 kOe. The Cu layer thickness seems to control the nature of magnetic coupling and the saturation field, with the two showing a correlation.  相似文献   

2.
The use of nano-oxide to improve the performance of spin valves has been extensively studied. But most of the investigations so far have been carried out on different samples. This may make some of the conclusions drawn from the experiments inconsistent because of the fluctuation in deposition conditions and device structures. In this work, the effect of nano-oxide on the properties of spin valves has been investigated through post-growth oxidation of the same sample in oxygen plasma for different rf powers and durations. The sample investigated was a bottom spin valve with the structure Si/SiO2/Ta/NiFe/IrMn/CoFe/Cu/CoFe/Ta. A relative increase of 20% and 12% was obtained in the giant magnetoresistance (GMR) ratio of as-deposited and annealed samples, respectively. It was found that, at a fixed rf power, there is a peak of the GMR ratio as the oxidation time increases. A higher peak value of the GMR ratio was obtained for lower rf power, although the required oxidation time is longer. This result can be well understood by considering both the enhanced specularity at the insulator/metal interface and the loss of magnetic effective thickness of the free layer by the oxidation. Magnetic parameters such as the interlayer coupling field (H0) and the coercivity of the free layer (Hcf) were also greatly influenced by the oxidation process. When only the Ta layer was oxidized, H0 increases very slightly, and Hcf increases with the oxidation time. However, when the CoFe free layer was oxidized, a significant increase was found for H0, and Hcf changes to decreasing. These results can be explained based on the Néel and RKKY coupling models. Received: 25 October 2001 / Accepted: 21 December 2001 / Published online: 3 June 2002  相似文献   

3.
We report on proximity effects of a Au buffer layer on the current-in-plane giant magnetoresistance effect (CIP-GMR) in high-quality, epitaxial Fe/Cr/Fe(001) trilayers. The lower Fe layer is grown in the shape of a wedge and allows simultaneous preparation of 24 GMR stripe-elements with different lower Fe thicknesses in the range from 13 to 14.5 ML. The layer-by-layer growth mode in combination with the small thickness variation gives rise to: (i) well-controlled roughness changes from stripe to stripe as confirmed by reflection high-energy electron diffraction (RHEED), and (ii) to a varying influence of the underlying Au buffer. The oscillatory roughness variation along the wedge yields an oscillatory GMR behavior as a function of Fe thickness and confirms the previous result that slightly increased interface roughness causes a higher GMR ratio. The proximity of the Au buffer to the GMR trilayer results in an increase of the GMR ratio with increasing Fe thickness. The latter effect is explained by spin-depolarization at the Fe/Au interface and in the bulk of the Au buffer.  相似文献   

4.
Using the two-point conductivity formula, we numerically evaluate the giant magnetoresistance (GMR) in magnetic superlattices with currents in the plane of the layers (CIP), from which the effect of the interfacial roughness and magnetization configuration on the GMR is studied. With increasing interfacial roughness, the maximal GMR ratio is found to first increase and then decrease, exhibiting a peak at an optimum strength of interfacial roughness. For systems composed of relatively thick layers, the GMR is approximately proportional to ,where is the angle between the magnetizations in two successive ferromagnetic layers, but noticeable departures from this dependence are found when the layers become sufficiently thin. Received 21 September 1998 and Received in final form 22 December 1998  相似文献   

5.
The local surface oxidation of the permalloy surface layer in Py/Cu GMR multilayers on a micron lateral scale has been analyzed by means of a microspot-X-ray absorption spectromicroscope utilizing synchrotron radiation from the Advanced Light Source bending magnet beamline 6.3.2. Additionally, the GMR multilayer samples prepared by dc magnetron sputtering have been analyzed by cross-sectional transmission electron microscopy, hard X-ray reflection and magnetoresistance measurements. The formation of a passivating iron-oxide layer on the sample surface was identified by X-ray absorption near edge structure spectroscopy (XANES) near the Fe-2p edge while no indication for nickel-oxide formation could be found. Small micron-size pits of reduced iron-oxide concentration could be identified by XANES microscopy while the corresponding nickel distribution appeared to be homogeneous. The results are explained in terms of a local breakdown of the passivating oxide layer. Received:16 October 2000 / Accepted: 4 December 2000 / Published online: 21 March 2001  相似文献   

6.
Co–Al2O3 granular films with a narrow distribution in cluster size of Co clusters embedded in Al2O3 matrix were prepared by sequential deposition based on self-organized growth. Resistivity dependence of giant magnetoresistance (GMR) was studied. The GMR takes a maximum of 5.2% at room temperature and 9.4% at 13 K and 5700 Gs when the resistivity of the sample is 4×105–7×105 μΩ cm. The temperature dependence of resistivities and GMR were discussed especially. A temperature dependence of conductance ρ∼exp[T1/(T+T0)] was found, which indicates the dominant conduction mechanism is fluctuation-induced tunneling. A linear relationship of GMR versus T was observed, GMR=akT, in applied magnetic field 5700 Gs. The remarkable character of temperature dependence of GMR should be due to the special microstructure that the clusters are monodispersed in the films.  相似文献   

7.
Ultrathin epitaxial FCC-Co films, which form part of a spin-valve structure, were found to undergo one- or two-jump magnetic switching, in GMR and MOKE measurements depending upon the field orientation. The transitions are mediated by the propagation of 180° or 90° domain walls. The Co two-jump spin switching in the spin-valve structure has contributed to the formation of three stable GMR states: parallel, antiparallel and a new intermediate state.  相似文献   

8.
The effect of the structural quality of the buffer stack on the structural properties, giant magnetoresistance (GMR) and the quality of the antiferromagnetic coupling has been investigated for Co/Cu/Co sandwiches prepared by DC-magnetron sputtering. Three kinds of buffers were employed: type A: Cr(6 nm)/Co(0.8 nm)/Cu(10 nm), type B: Fe(6 nm)/Co(0.8 nm)/Cu(10 nm) and type C: Cr(4 nm)/Fe(3 nm)/Co(0.8 nm)/Cu(10 nm). For B and C type buffers, the antiferromagnetic alignment is very interesting at zero field with a coupling strength larger than 0.4 erg/cm2 and a GMR signal reaching 5% at room temperature. However, for the A type buffer the antiferromagnetic coupling completely disappears, while the GMR drops to about 0.8%. X-ray diffraction, atomic force microscopy and transmission electron microscopy have been performed in order to understand the origin of the observed difference in the magnetic properties. The results show a strong difference in the average surface roughness, 1.15 nm and 0.35 nm, respectively for the A and C types buffers, and demonstrate that the quality of the surface of the buffer is the key to optimize both the GMR and the indirect exchange coupling. Received 11 July 2000  相似文献   

9.
The magnetic properties of disordered layered structures grown on surface-reconstructed substrates are studied with respect to percolation and random fields phenomena. Both the layered site-dilution and fluctuating magnetic field are considered in the frame of the Ising model to describe the structural disorder in a deposited layer. The results of effective field calculations superior to the standard molecular field approximation are qualitatively comparable with the experimental data previously obtained for Fe films deposited on GaAs(001) (4×2)-reconstructed surface.  相似文献   

10.
Small cobalt particles embedded in a silver matrix have been prepared using the electrodeposition technique. The size of the clusters is controlled by the deposition potential and the Co growth time. Structural, magnetic and magneto-transport properties of Co–Ag samples have been investigated as a function of the Co concentration between 2 and 40 at% cobalt. Superparamagnetic behavior is evidenced for the low contents of cobalt while long-range magnetic order appears at higher Co concentrations. The particles size has been determined from magnetic properties and from the X-ray diffraction technique, and varies between 3.5 and 9 nm. Magnetoresistance passes through a maximum as a function of the cobalt concentration. A maximum of ∼4% GMR is obtained at room temperature while GMR reaches a value of 14% at 10 K.  相似文献   

11.
A conventional Ta/NiFe/Cu/NiFe/FeMn spin valve was prepared to investigate the exchange bias properties with the variations of deposition field. By enhancing the deposition magnetic fields from 50 to 650 Oe, increase of exchange bias fields at a given thickness of the pinned NiFe layer has been found in the spin valves. In this paper, we show that this increase is due to the change of magnetic moment distribution at the ferromagnetic and antiferromagnetic interface by comparison of measured results with the interfacial uncompensated model. Therefore, by enhancing deposition magnetic fields, a large exchange-coupling field can be achieved in relatively thicker magnetic films for application.  相似文献   

12.
Giant magnetoresistance (GMR) of sequentially evaporated Fe-Ag structures has been investigated. Direct experimental evidence is given, showing that inserting ferromagnetic layers into a granular structure significantly enhances the magnetoresistance. The increase in the GMR effect is attributed to spin polarization effects. The large enhancement (up to more than a fourfold value) and the linear variation of the GMR in low magnetic fields are explained by scattering of the spin polarized conduction electrons on paramagnetic grains.  相似文献   

13.
The Zhang–Levy–Granovskii (Z–L–G) model of the magnetorefractive effect (MRE) in granular films and the Jacquet–Valet (J–V) model, originally developed for magnetic multilayers, are compared and their common origin demonstrated. Simulations in an extended Hagen–Rubens (H–R) model give new insight into the variation with wavelength of the MRE, and the relative dependence of giant magnetoresistance (GMR) and the MRE to material and experimental parameters such as bulk and interface scattering parameters, mean free paths, grain diameter, polarisation and reflection geometry is explored. The sensitivity of the size, wavelength dependence and the position of the depth of the minimum in the MRE spectra to the different parameters is verified. We establish powerful new equations to correlate the MRE and GMR, and we analyse their validity for a variety of film parameters. This suggests a new approach to the use of the MRE in sensing GMR in the films.  相似文献   

14.
Commercially available track-etched polyester membranes were used as templates to electrodeposit Co–Ni–Cu/Cu multilayered nanowires, giving room-temperature current perpendicular to plane (CPP) giant magnetoresistance (GMR) values of up to ∼12%. In contrast to similar nanowires electrodeposited in track-etched polycarbonate membranes, the GMR obtained in multilayered nanowires electrodeposited in the polyester membranes increased with decreasing Cu-layer thickness tCu, for tCu in the 2–7 nm range, indicating a lack of ferromagnetic coupling through pinholes, etc. Transmission electron micrographs showed clear evidence for smooth, parallel layer interfaces in the nanowires.  相似文献   

15.
An electrical signal anomaly is an undesired signal and is difficult to detect by a commercial instrument due to its short duration and unpredictable fault on a signal. Since a GMR recording head is a stack of nanometer thick multilayers, in particular, a magnetic layer and conductor layers, for magnetic insulating spacers, it is very sensitive to electron movements. Visible damage is understandable and protectable but latent failure cannot be measured. It is possibly observed by using frequency-domain apparatus but certainly it is not real-time detection. Therefore, in order to detect a latent failure head affected by ESD in the time domain, current conventional instruments are ineffective. In this study, the wavelet transform technique using the 4th order Daubechies is proposed to detect the glitches on a magnetic recording head signal in the time domain. It is found that the glitches occur when the ESD level of the charged device model (CDM) and human body model (HBM) on giant magnetoresistive (GMR) heads are in ranges of 6–15 V and 40–120 V, respectively. The electrical test parameters and scanning electron microscope (SEM) photo of the recording heads show no visible change in reader sensor. To ensure the results, the GMR damage is observed by SEM when the CDM-ESD and HBM-ESD are 10 V and 130 V, respectively. The glitches in the magnetic response signal of the GMR head are found to increase when the ESD level is increased. Thus, the Daubechies wavelet transform technique can be a novel approach to detect the pre-degradation of a GMR head due to an ESD effect.  相似文献   

16.
Spin torque transfer structures with new spin switching configurations are proposed, fabricated and investigated in this paper. The non-uniform current-induced magnetization switching is implemented based on both GMR and MTJ nano devices. The proposed new spin transfer structure has a hybrid free layer that consists of a layer with conductive channels (magnetic) and non-conductive matrix (non-magnetic) and traditional free layer(s). Two mechanisms, a higher local current density by nano-current-channels and a non-uniform magnetization switching (reversal domain nucleation and growth) by a magnetic nanocomposite structure, contribute in reducing the switching current density. The critical switching current density for the new spin transfer structure is reduced to one third of the typical value for the normal structure. It can be expected to have one order of magnitude or more reduction for the critical current density if the optimization of materials and fabrication processes could be done further. Meanwhile, the thermal stability of this new spin transfer structure is not degraded, which may solve the long-standing scaling problem for magnetic random access memory (MRAM). This spin transfer structure, with the proposed and demonstrated new spin switching configurations, not only provides a solid approach for the practical application of spin transfer devices but also forms a unique platform for researchers to explore the non-uniform current-induced switching process.  相似文献   

17.
The effect of a Mg insertion layer between the Fe electrode and the MgO barrier layer on the electronic structure and magnetic properties of Fe/MgO/Fe magnetic tunnel junction has been studied by first-principle method. Two models of (a) Fe(1 0 0)/MgO(1 0 0)/Fe(1 0 0) and (b) Fe(1 0 0)/Mg/MgO(1 0 0)/Mg/Fe(1 0 0) were established. Our calculation results show that the Mg insertion layer has enhanced both the spin polarization and the magnetic moment of its adjacent Fe layer. The results have been discussed in terms of the variation in the DOS features and charge transfer with the Mg insertion layer.  相似文献   

18.
We study the field induced instability of the ground state of ferrimagnetic multilayers consisting of a stacking alternating two different uniaxial ferromagnetic layers. For multilayers with even number of layers N, we obtain analytical expressions for the critical fields in terms of the magnetic parameters (anisotropies, and interlayer exchange coupling), for any value of N. The critical fields are calculated from the energy fluctuations for small variations in the equilibrium magnetic profile. The form of the hysteresis curves is discussed, using the expressions of the critical fields.  相似文献   

19.
We investigate the magnetic excitations for the magnetic problem arising from the absence of magnetic translation symmetry in one dimension due to the presence of an impurity layer embedded within a semi-infinite ferromagnet. A Heisenberg model is employed to investigate the possibility that localized modes can occur with an impurity layer implanted within a semi-infinite ferromagnet. No electronic effects are considered. The theoretical approach employs the matching procedure in the mean field approximation and determines the propagating and evanescent spin amplitude fields including the contribution due to an applied field. The results are used to calculate the energies of localized modes associated with the impurity layer and with the surface. Numerical examples of the modes are given and they are found to exhibit various effects due to the interplay between the impurity layer and surface modes. It is shown that more localized modes can occur and the modification of the spin wave spectra can be signaled by the appearance of surface and impurity modes, besides the bulk excitations. Also, the bulk spin fluctuations field, the spin waves localized on the surface as well as on impurity layer depend are shown to depend on the nature of the exchange coupling between spin sites, the values of spin sites and the position of the impurity layer from the surface.  相似文献   

20.
The correlation between emissivity and giant magnetoresistance (GMR) in magnetic thin films is investigated at infrared (IR) wavelengths using a thin-film model of emissivity. The sensitivity of emissivity to GMR is shown to depend upon film thickness, and agrees excellently with bulk-material results for films thicker than the material skin depth. However, for films thinner than the skin depth the sensitivity to GMR is shown to weaken. In addition, at mid-to-far IR wavelengths the spectral dependence of the correlation is investigated using a modified Drude-type expression for the refractive index combined with the thin-film model. This is applied to a multilayered GMR material, and the sensitivity of emissivity to GMR is shown to have a similar spectral dependence to that of the magnetorefractive effect. An analytical interpretation in terms of skin depth is also developed at long wavelengths, and shown to agree excellently with thin-film simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号