首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 121 毫秒
1.
Some consequences of one-valuedness on the real phase space for certain analytic functions over the complex phase space of a Hamiltonian system are demonstrated. The Bohr-Sommerfeld quantisation conditions are reformulated as one-valuedness conditions for these functions on the complex phase space.On leave of absence from Department of Physics, University of Khartoum, Sudan.  相似文献   

2.
The basic geometry of twistors is developed as an application of geometric quantisation theory to the conformal group. It is found, however, that the Kähler form is not positive and that the quantised Hilbert space is trivial. This serves both to highlight difficulties in the quantisation theory for semi-simple Lie groups and to point out some of the obstacles in the way of developing a rigorous theory of twistors. It also suggests some areas in which the interplay between the two theories may be helpful in clarifying issues.  相似文献   

3.
Maps of functions on classical phase space to quantum operators do not preserve the algebraic structure. After locating the algebraic reasons for it, the problem of quantisation is redefined and the Moyal bracket is discussed for its structure preservation. This quantisation entails the inclusion of Schwartz distributions to the space of classical functions.  相似文献   

4.
We derive explicit semiclassical quantisation conditions for the Dirac and Pauli equations. We show that the spin degree of freedom yields a contribution which is of the same order of magnitude as the Maslov correction in Einstein-Brillouin-Keller quantisation. In order to obtain this result a generalisation of the notion of integrability for a certain skew product flow of classical translational dynamics and classical spin precession has to be derived. Among the examples discussed is the relativistic Kepler problem with Thomas precession, whose treatment sheds some light on the amazing success of Sommerfeld’s theory of fine structure [Ann. Phys. (Leipzig) 51 (1916) 1].  相似文献   

5.
6.
Quantum systems that are confined to circuit geometries are called quantum circuits. Macroscopic superconducting circuits are quantum circuits which can be modelled using a Quantisation by Parts scheme based on the macroscopic wave function approach of Feynman. This paper studies the circuit composed of an input wire and an output plate. We find that in order to achieve a consistent theory of supercurrent flow we have to generalize the quantisation by parts scheme to quantise in a path space. The generalized theory predicts a current flow down the wire into the plane. In addition to a current flowing radially outwards in the plane, the theory allows a circulating current round the origin. Strikingly, the circulating current can flow clockwise or anti-clockwise in such a way as to generate a magnetic moment of magnitude half of a Bohr magneton for an orbiting electron in an atom and a magnetic flux half that of the magnetic flux quantum of a superconducting ring. There is also the possibility of a macroscopic superposition of the two states of opposing circulating currents resembling a Schr?dinger’s cat situation. Furthermore, we outline a setup involving an external magnetic field that may allow experimental tests of the theory.  相似文献   

7.
The aim of this article is to present unifying proofs for results in geometric quantisation with real polarisations by exploring the existence of symplectic circle actions. It provides an extension of Rawnsley’s results on the Kostant complex, and gives a partial result for the focus–focus contribution to geometric quantisation; as well as, an alternative proof for theorems of Śniatycki and Hamilton.  相似文献   

8.
MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated with the set of phase space paths determined by solutions of Hamilton’s equations. The MaxEnt inference algorithm with Shannon’s concept of the conditional information entropy is then applied to prediction, consistently with this strict microscopic constraint on time evolution in phase space. The second approach is based on the same concepts, with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic constraint given by a phase space average. We consider the incomplete nature of our information about microscopic dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics, and the concept of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. Information entropy is the theoretic upper bound on the conditional information entropy, with the upper bound attained only in case of the complete loss of correlation. In this alternative approach to prediction of macroscopic time evolution, maximization of the conditional information entropy is equivalent to the loss of statistical correlation, and leads to corresponding loss of information. In accordance with the original idea of Jaynes, irreversibility appears as a consequence of gradual loss of information about possible microstates of the system.  相似文献   

9.
Based on the phase-space path integral (functional integral) for a system with a regular or singular Lagrangian, the generalized Ward identities for phase space generating functional under the global transformation in phase space are derived respectively. The canonical Noether theorem at the quantum level is also established. It is pointed out that the connection between the symmetries and conservation laws in classical theories, in general,is no longer preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta as usually performed. Applying the present formulation to Yang-Mills theory, the quantal BRS conserved quantity and Ward-Takahashi identity for BRS tranformation are derived; the Ward identities for gaugeghost proper vertices and new quantal conserved quantity are also found. In comparison of quantal conservation laws with those one deriving from configuration-space path integral using the Faddeev-Popov(F-P) trick is discussed. A precise study of path-integral quantisation for a nonlinear sigma model with Hopf and Chern-Simons (CS) terms is reexamined. It has been shown that the angular momentum at the quantum level is equal to classical (Noether ) one. Applying our formulation to non-Abelian CS theory, the quantal conserved angular momentum of this system is obtained which differs from classical one in that one needs to take into account the contribution of angular momenta of ghost fields.  相似文献   

10.
We consider the problem of defining completely a class of additive conservation laws for the generalized Liouville equation whose characteristics are given by an arbitrary system of first-order ordinary differential equations. We first show that if the conservation law, a time-invariant functional, is additive on functions having disjoint compact support in phase space, then it is represented by an integral over phase space of a kernel which is a function of the solution to the Liouville equation. Then we use the fact that in classical mechanics phase space is usually a direct product of physical space and velocity space (Newtonian systems). We prove that for such systems the aforementioned representation of the invariant functionals will hold for conservation laws which are additive only in physical space; i.e., additivity in physical space automatically implies additivity in the whole phase space. We extend the results to include non-degenerate Hamiltonian systems, and, more generally, to include both conservative and dissipative dynamical systems. Some applications of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号