首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
It is found that the radiative recombination rate rises when silicon nanocrystals are doped with donors. This rise turns out to be stronger when a nanocrystal surface contains abundant defects capable of capturing electrons emitted by donors.  相似文献   

2.
Results from our calculations of the electron tunneling rates between silicon nanocrystals are presented. It is shown that tunnel transitions can be more efficient than radiative interband recombination and substantially influence emission in ensembles of silicon nanocrystals.  相似文献   

3.
We present a review of spin-dependent properties of excitons in semiconductor colloidal nanocrystals. The photoluminescences (PL) properties of neutral and charged excitons (trions) are compared. The mechanisms and the polarization of radiative recombination of a “dark” (spin-forbidden) exciton that determines the low-temperature PL of colloidal nanocrystals are discussed in detail. The radiative recombination of a dark exciton becomes possible as a result of simultaneous flips of the surface spin and electron spin in a dark exciton that leads to admixture of bright exciton states. This recombination mechanism is effective in the case of a disordered state of the spin system and is suppressed if the polaron ferromagnetic state forms. The conditions and various mechanisms of formation of the spin polaron state and possibilities of its experimental detection are discussed. The experimental and theoretical studies of magnetic field-induced circular polarization of PL in ensembles of colloidal nanocrystals are reviewed.  相似文献   

4.
We have studied the photoluminescence of Ge samples cleaved in ultra-high vacuum to better understand the role of intrinsic surface states in radiative and non-radiative recombination. We find that the surface states associated with the as-cleaved surface (2 × 1 reconstructed 〈111〉) are very efficient in quenching the band-to-band recombination at T ~ 90 K. The transitions through surface states are predominantly non-radiative. The adsorption of oxygen, up to a half monolayer, markedly reduces this quenching effect by removing the surface state bands. Some preliminary experimental results on the question of radiative transitions involving the surface states is presented. No luminescence unambiguously attributable to surface state transitions is observed for wavelengths shorter than 5 μm.  相似文献   

5.
This paper summarizes systematic studies on the luminescence from CdSe nanocrystals in the situation of strong zero-dimensional confinement. We discuss the role of surface and defect states, the origin of the photo-darkening and demonstrate by calorimetric adsorption measurements that the internal quantum efficiency is in the range of some 10%. The lifetimes of the intrinsic excitations are strongly size-dependent. While the radiative recombination (≈ 1 ns) is dominant for larger nanocrystals, we observe a dramatic increase of the non-radiative rate below 4 nm as a result of the reduced volume to surface ratio. The combination of ultra-fast and size-selective excitation allows us to observe a progression of sharp LO-phonon lines signifying the zero-dimensional character of the nanocrystals and providing information on the strength of the phonon coupling and the homogeneous width of the quantum-confined ground state.  相似文献   

6.
Multi-colour emitting doped ZnS nanocrystals surface capped with pyridine (P-ZnS) or polyvinyl pyrrolidone (PVP-ZnS) have been synthesized by wet chemical methods. The photoluminescence studies show that the dopant related emission from P-ZnS nanocrystals are caused by the energy transfer from band-to-band excitation of the host lattice. However, in the case of PVP capped ZnS, considerable enhancement in the emission intensity was observed and the corresponding excitation spectra appeared dramatically broadened due to the presence of multiple excitation bands with peak maxima at 235, 253, 260, 275, and 310 nm. The bands from 235 to 275 nm are assigned to the electronic transitions in the chemisorbed PVP molecules whereas the excitation maximum around 310 nm corresponds to the band-to-band transition within the nanocrystalline ZnS host. The presence of PVP related energy bands in the excitation spectrum indicates the process of energy transfer from the surface adsorbed PVP molecules to dopant centers in ZnS nanocrystals. This study brings out a heterogeneous sensitizer-activator relation between organic surface adsorbate and doped semiconducting nanocrystals.  相似文献   

7.
Sharp line structure attributable to phonon assisted radiative emission has been observed in the 6 K photoluminescence spectra from deep centers in bulk samples of chromium doped GaAs. Two luminescence bands at 0.56 and 0.8 eV have been observed and both bands exhibit evidence of phonon assisted radiative recombination. An exploration of these luminescence bands in terms of excited state to ground state transitions of Cr3+ and Cr2+ ions is proposed.  相似文献   

8.
周之琰  杨坤  黄耀民  林涛  冯哲川 《发光学报》2018,39(12):1722-1729
为了解决在单晶硅衬底上生长的InGaN/GaN多层量子阱发光二极管器件发光效率显著降低的问题,使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为n型层释放多层界面间的张应力。采用稳态荧光谱及时间分辨荧光谱测量,提取并分析了使用该方案前后的多层量子阱中辐射/非辐射复合速率随温度(10~300 K)的变化规律。实验结果表明引入δ-Si掺杂的n-GaN层后,非辐射复合平均激活能由(18±3)meV升高到(38±10)meV,对应非辐射复合速率随温度升高而上升的趋势变缓,室温下非辐射复合速率下降,体系中与阱宽涨落有关的浅能级复合中心浓度减小,PL峰位由531 nm左右红移至579 nm左右,样品PL效率随温度的衰减受到抑制。使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为生长在Si衬底上的InGaN/GaN多层量子阱LED器件n型层,由于应力释放,降低了多层量子阱与n-GaN界面、InGaN/GaN界面的缺陷密度,使得器件性能得到了改善。  相似文献   

9.
We study ultrafast photoluminescence (PL) dynamics of Si nanocrystals (NCs). The early-time PL spectra (<1 ns), which show strong dependence on NC size, are attributed to emission involving NC quantized states. The PL spectra recorded for long delays (>10 ns) are almost independent of NC size and are likely due to surface-related recombination. Based on instantaneous PL intensities measured 2 ps after excitation, we determine intrinsic radiative rate constants for NCs of different sizes. These constants sharply increase for confinement energies greater than approximately 1 eV indicating a fast, exponential growth of the oscillator strength of zero-phonon, pseudodirect transitions.  相似文献   

10.
We review recent advances in the understanding of the enhanced electron–ion recombination observed in storage ring experiments. The measured recombination rates show a strong enhancement relative to what the standard radiative recombination rates predict. A transient motional electric field is induced in the merging region of an electron and an ion beam in the electron cooler. This induced field opens an additional pathway for free-bound transitions of electrons. The formed Rydberg states can be radiatively stabilized and contribute to the measured rate. We show that this “field induced recombination” (FIR) explains the gap previously observed between measurements and the standard radiative recombination rate.  相似文献   

11.
Electron-ion recombination observed in storage ring experiments shows a strong enhancement relative to what standard radiative recombination rates predict. We simulate the effect of a transient motional electric field induced by the merging of an electron and an ion beam in the electron cooler which opens an additional pathway for free-bound transitions of electrons. We show that the measured rate contains a significant contribution from radiative stabilization of Rydberg states formed by this transient motional electric field. The absolute excess recombination rates obtained are in good agreement with the experimental data. The scaling of the rate with the ion charge and the magnetic guiding field is analyzed.  相似文献   

12.
The theory of the multiphonon and radiative recombination of a self-trapped exciton on the interface of a silicon nanocrystal in a SiO2 matrix is developed. Self-trapped excitons play a key role in the hot carrier dynamics in nanocrystals under photoexcitation. The ratio of the probabilities of the multiphonon and radiative recombination of the self-trapped exciton is estimated. The probabilities of exciton tunnel transition from the self-trapped state to a nanocrystal are calculated for nanocrystals of various sizes. The infrared range spectrum of the luminescence of the self-trapped exciton is obtained.  相似文献   

13.
Laser-stimulated radiative transitions from states close to the ionization threshold to low-lying atomic levels are considered for protons (antiprotons) in a cold electron (positron) plasma and estimates for the resulting formation rate of hydrogen (antihydrogen) atoms in the ground state are given. The estimates apply to both laser-stimulated recombination and induced radiative stabilization of high Rydberg levels. First experiments concerning laser-stimulated recombination in merged beams of electrons and protons are discussed, which have confirmed the rate predictions for this process. In view of antihydrogen formation in a cold trapped positron plasma, the use of two successive stimulated transitions is considered for obtaining a high formation rate of ground-state atoms at relatively low radiation intensity.  相似文献   

14.
The properties and applications of nanocrystals doped with transition and rare-earth impurities are reviewed. The high efficiency and ultrafast recombination times observed in these doped nanocrystals make these materials very attractive for optoelectronic applications.  相似文献   

15.
The water-soluble silver ion-doped cadmium sulfide nanocrystals were synthesized by a co-precipitation technique in aqueous solution using L-cysteine as surface modifier, and then L-cysteine-modified cadmium sulfide doped with silver ion/zinc sulfide core/shell nanocrystals were prepared by zinc sulfide epitaxial coated on surface of silver ion-doped cadmium sulfide nanocrystals. The crystal structure, morphology, and spectral properties of cadmium sulfide doped with silver ion/zinc sulfide nanocrystals were characterized by X-ray power diffraction, transmission electron microscope, infrared spectrum, and photoluminescence spectrum. The results show that the photoluminescence quantum yield of cadmium sulfide doped with silver ion/zinc sulfide nanocrystals is improved greatly after doped with silver ion and coated with zinc sulfide shell. The cysteine modified on the surface of cadmium sulfide doped with silver ion/zinc sulfide nanocrystals renders the nanocrystals water-soluble and biocompatible.  相似文献   

16.
The light beam of a laser is focussed near the surface of a semiconductor sample. Thereby the excitation rate can be controlled precisely assuming a Gaussian intensity distribution of the beam. Measuring the recombination light intensity yields the quantum efficiency of the sample. By sinusoidal modulation of the excitation light and measurement of the resulting phase shift of the recombination light, the carrier density dependent lifetime is obtained. By evaluation of measured internal quantum efficiency and phase shift, Auger and radiative recombination coefficients are determined. The analysis takes into account the carrier density dependence of the radiative coefficient and shows that for most experimental conditions carrier diffusion can be neglected. In this case the analysis can be performed without numerical integration. Application of the method to quaternary InGaAsP material yielded values for Auger coefficient and radiative coefficients in accordance with published results.  相似文献   

17.
Here, we report the synthesis of colloidal CdS nanoparticles by capping with starch, phenol and pyridine. We also study the photophysical properties of CdS nanoparticles by steady state and time-resolved photoluminescence spectroscopy. The experimental results show that the relaxation of the excited state of CdS nanoparticles is composed of two different components. Our analysis suggests that the fast and slow components decay times of these capped CdS nanocrystals are due to trapping of carriers in surface state and e–h radiative recombination processes, respectively.  相似文献   

18.
The radiation emitted spontaneously by a semiconductor which has been excited for a very short time decays exponentially with a time constant that depends on the recombination rate of electrons and holes. This recombination rate is the combination of radiative and nonradiative transition rates between conduction and valence bands of the semiconductor. The radiative recombination rate depends on the density of states of the electromagnetic field, which can be made to be dependent on the geometry. In this paper, we report on the dependence of the fluorescence lifetime upon the thickness of active thin films. For systems in which the radiative recombination rate is dominant over the nonradiative ones, the total recombination time can be changed by suitable modifications of the thickness of the film. In this situation, the nonradiative rate can be evaluated. We present experimental results for the case of cadmium sulphide (CdS) thin films.  相似文献   

19.
We examine the physical factors that influence the radiative transitions of small-radius optical centers in ellipsoidal nanoparticles. The main objective of this work is to reveal to the extent to which changes in the phonon subsystem and electron-phonon interaction caused by spatial confinement effects affect the radiative characteristics of optical centers in nanocrystals.  相似文献   

20.
通过设计InGaN多量子阱LED有源区的不同结构,研究了载流子复合机制对LED调制速度的影响。结果显示,由于窄量子阱LED的载流子空间波函数重叠几率更高,且电子泄露效应更显著,所以复合速率更快,调制带宽更高。In组分为1%的InGaN量子垒LED可提高辐射复合的权重,使得调制带宽高于GaN量子垒LED;In组分为5%时,电子泄露和俄歇复合占据主导地位,且由于这两种复合机制复合速率很快,所以调制带宽显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号