首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of reverberation-ray matrix has been extended to the investigation of the field of wave propagation in a transversely isotropic laminate. By using the decomposition in a local coordinate system, any complicated waves can be separated into a departing part and an arriving part, which are expressed in the local scattering matrix at structural interface. Together with the local phase matrix, we obtain a certain wave transmitting from a layer to the neighboring one. Thus, the wave propagation in the whole laminate can be described when assembling the local information with global phase and global permutation matrices. This method is perfectly suitable for evaluating the transient waves involving a large number of generalized-rays. In this paper, the method is applied to laminate made of transversely isotropic material. Numerical results show the influence of the change of thickness and elastic constants of the layers on the wave propagation in laminate.  相似文献   

2.
In anisotropic media, the direction of energy propagation does not necessarily coincide with the wave normal, i.e. the energy flux vector does not coincide with the wave normal. Since, experimentally, one measures group velocity not phase velocity, one must therefore be careful in interpreting ultrasonic wave speed measurements in anisotropic media. This is of particular importance in elastic property reconstruction where acoustic velocity measurements are used as the basis for determining anisotropic material properties. In this work, the consequences of energy flux deviation from the wave normal are considered for typical experimental geometries. Particular attention is devoted to developing appropriate relationships between the phase velocity and ultrasonic transit time measurements, as these relations are most useful for elastic property reconstruction. In all the cases considered, it is shown that the phase velocity can be directly calculated from appropriate time delay measurements.  相似文献   

3.
Theoretical analysis of electromagnetic wave propagation in a perfect electromagnetic conductor (PEMC) parallel-plate waveguide filled with a chiroplasma material is presented in this article. The derived formulations are general and can analyze perfect electric, perfect magnetic, or PEMC waveguides filled with any general isotropic/anisotropic material including plasma and metamaterials. The characteristic equation for the modes in this waveguide is obtained, and the behavior of the dispersion curves and the energy flux are examined and evaluated numerically. The results demonstrate that the chirality parameter, the plasma frequency, and the cyclotron frequency influence the behavior of the energy flux transported in the guide, in magnitude and orientation. The bifurcated mode cutoff frequencies are sensitive to the variations in the filling material parameters and likewise effected by the variations in the PEMC walls admittance parameter.  相似文献   

4.
In this work, the photothermal waves in an unbounded semiconducting medium with spherical cavity are studied. This problem is solved using the theory of coupled plasma, thermal, and elastic wave. An unbounded material, elastic semiconductor containing a spherical cavity with isotropic and homogeneous thermal and elastic properties has been considered. The inner surface of the cavity is taken traction-free and subjected to an exponentially decaying pulse boundary heat flux. Laplace transform techniques and eigenvalue approach were used to obtain the analytical solutions. Numerical computations have been done for silicon-like semiconductor material, and the results are presented graphically to estimate the effect of time and the coupling between the plasma, thermal, and elastic waves.  相似文献   

5.
 金属材料的高温动态力学性能是材料科学领域中的重要方面。本文介绍LY-12合金铝在常温至450 ℃的温度区间内和动载下(应变率为103/s),材料弹性模量的研究。此项研究采用的试验装置为一维Hopkinson压杆及管式高温炉。应用一维弹性应力波传播理论,测得LY-12铝试件在不同温度T条件下的声速c(T),按照c(T)=[E(T)/ρ(T)]1/2,获得杨氏模量E(T)随温度的变化曲线。  相似文献   

6.
A theoretical study of wave propagation in a piezoelectric cylinder of infinite length of arbitrary cross section with a circular cylindrical cavity of class 6 is investigated. The frequency equations are obtained by using the Fourier expansion collocation method and are analyzed numerically. The frequencies are evaluated for circular, elliptic, and cardioidal sections of bone and are tabulated. A plot of frequency spectrum is also presented for the cardioidal cross-section bar.  相似文献   

7.
A separable form of the equations of motion for a cylindrical anisotropic elastic waveguide of arbitrary cross-section is derived. From these the orthogonality relation for the modes of harmonic wave propagation in the waveguide is readily derived.  相似文献   

8.
激光光路追踪Wigner分布函数方法   总被引:2,自引:2,他引:0       下载免费PDF全文
李欣 《强激光与粒子束》2013,25(7):1705-1708
提出了一种考虑衍射效应的激光几何光路追踪方法。引入由激光标量场定义的Wigner激光能量相空间分布函数,并给出该函数满足的刘维尔运动方程。Wigner分布函数用来描述经过空间任一点沿任一方向传输的激光光线上的能量分配。激光能量沿由波包色散关系定义的光线轨迹保持不变(真空中)或者衰减(等离子体中)。与传统几何光路追踪方法相比,该方法从理论上给出了激光光线初始携带能量份额的计算方法,并且将激光标量场的相位信息自然地包含在Wigner分布函数的定义里。算例表明,该方法与解析模型及广泛使用的菲涅耳衍射积分方法结果一致。  相似文献   

9.
An accurate solution for high-frequency pulse propagation in an axisymmetric elastic bar is obtained using a new finite element technique that yields accurate non-oscillatory solutions for wave propagation problems in solids. The solution of the problem is very important for the understanding of dynamics experiments in the split Hopkinson pressure bar (SHPB). In contrast to known approaches, no additional assumptions are necessary for the accurate solution of the considered problem. The new solution helps to elucidate the complicated distribution of parameters during high-frequency pulse propagation down the bar as well as to estimate the applicability of the traditional dispersion correction used in the literature for the analysis of wave propagation in a finite bar. Due to the dimensionless formulation of the problem, the numerical results obtained depend on Poisson's ratio, the length of the bar and the pulse frequency, and are independent of Young's modulus, the density and the radius of the bar.  相似文献   

10.
We present a fast and efficient method to find the vectorial eigenmodes of waveguides with an arbitrary 2D cross-section. The method can deal with both material losses and radiation losses (through perfectly matched layer boundary conditions). In the first stage of the method, a coarse estimate of the propagation constants is found using a plane-wave method. In the second stage, these estimates are refined using a mode-matching method.  相似文献   

11.
Both dispersion curves and wave structures, which are displacement distributions on a bar cross-section, are essential for guided wave NDEs. Theoretical dispersion curves and wave structures for a bar with an arbitrary cross-section are derived in this paper using a special modeling technique called the semi-analytical finite element method (SAFEM). The guidelines for guided wave NDEs of bar-like structures are also shown based on wave structure and modal analysis. First, the relationship between the dispersion curves and their corresponding wave structures were obtained for a square rod. Modes with longitudinal vibration have higher group velocities and torsional modes have constant phase and group velocities. Next, the relationship between the dispersion curves and wave structures for a rail are detailed. The rail is used to represent a bar with a complex cross-section. Similar to the square rod results, the rail's longitudinal modes have higher group velocities. However, the rail contains modes with local vibration. Finally, single mode detection and excitation techniques are introduced. A single mode can be obtained by detecting and exciting with a weighted function that corresponds to a specific mode's wave structure.  相似文献   

12.
A theoretical analysis for the free vibration of simply supported buried pipes has been investigated using the wave propagation approach. The pipe modeled as a thin cylindrical shell of linear homogeneous isotropic elastic material buried in a linear isotropic homogeneous elastic medium of infinite extent. The vibrations of the pipe are examined by using Flüggle shell equation. The natural frequencies are obtained for the pipes surrounded by vacuo or elastic medium. The results are compared with those available in the literature and agreement is found with them. It is found that the free vibration frequency of the pipe does not appear for some of the axial or circular vibration modes and the real natural frequencies of the pipe are significantly dependent on the rigidity of the surrounding medium.  相似文献   

13.
A method for evaluating the acoustical properties of homogeneous and isotropic porous materials that may be modeled as fluids having complex properties is described here. To implement the procedure, a conventional, two-microphone standing wave tube was modified to include: a new sample holder; a section downstream of the sample holder that accommodated a second pair of microphone holders and an approximately anechoic termination. Sound-pressure measurements at two upstream and two downstream locations were then used to estimate the two-by-two transfer matrix of porous material samples. The experimental transfer matrix method has been most widely used in the past to measure the acoustical properties of silencer system components. That procedure was made more efficient here by taking advantage of the reciprocal nature of sound transmission through homogeneous and isotropic porous layers. The transfer matrix of a homogeneous and isotropic, rigid or limp porous layer can easily be used to identify the material's characteristic impedance and wave number, from which other acoustical quantities of interest can be calculated. The procedure has been used to estimate the acoustical properties of a glass fiber material: good agreement was found between the estimated acoustical properties and those predicted by using the formulas of Delany and Bazley.  相似文献   

14.
郭威  杨德森 《物理学报》2020,(7):90-101
理论研究了声波在非均匀波导中的空间聚焦问题,利用多模态导纳法构建波导内任意位置处声压与入射声压在模态域的映射关系,计算使声波聚焦于空间某位置时的最佳入射波,并画出了相应的聚焦声场.研究了三种非均匀情况:水平变截面波导、含散射体波导以及声速垂直变化波导.结果表明,当输入最佳入射波时,在非均匀波导中可以产生良好的单点或多点声聚焦效果,声波的聚焦过程充分地利用了波导结构及介质非均匀性对声波的散射作用.  相似文献   

15.
Wave propagation in multilayered piezoelectric structures has received much attention in past forty years. But the research objects of previous research works are only for semi-infinite structures and one-dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. This paper proposes an extension of the orthogonal polynomial series approach to solve the wave propagation problem in a two-dimensional (2-D) piezoelectric structure, namely, a multilayered piezoelectric bar with a rectangular cross-section. Through numerical comparison with the available reference results for a purely elastic multilayered rectangular bar, the validity of the extended polynomial series approach is illustrated. The dispersion curves and electric potential distributions of various multilayered piezoelectric rectangular bars are calculated to reveal their wave propagation characteristics.  相似文献   

16.
In the article the analysis of a monochromatic elastic surface wave in an unlimited plate of limited thickness whose opposite surfaces are planar and mutually parallel, made of an elastic isotropic material of a constant density is described. Equations are calculated for the wave number calculation — speed of surface wave propagation, and an equation for the calculation of the vector components deformation (component trajectory) of the elastic medium.  相似文献   

17.
In solid phase materials, differently from what happens in the fluid phase, elastic waves propagate both through longitudinal and transverse waves. From the speed of propagation of longitudinal and transverse waves, it is possible to evaluate important elastic properties of the solids under study, namely the Young’s modulus, the Poisson’s coefficient, the bulk modulus and the shear modulus. This work suggests an accurate method for measuring wave propagation speeds in homogeneous and non-homogeneous materials with the purpose to evaluate their mechanical properties and the associated uncertainty.First of all, to assess the performance of the proposed methodology, based on the “pulse-echo” technique, in terms of accuracy and precision, measurements of wave propagation speeds have been carried out, in atmospheric conditions, in well-known homogeneous and isotropic materials, such as copper, aluminum, stainless steel and also polymethyl methacrylate (Plexiglas®), Teflon® and optical glass BK7. These results were compared with the values reported in literature (if present), showing how published speed of sound data are very disperse and not so reliable owing to the lack of a precise uncertainty evaluation and of the temperature value associated to the measurement. Then, the same experimental apparatus was used for measuring speed of sound as a function of temperature (from 274.15 to 313.15 K) for 304 stainless steel and oxygen free copper, showing a good accuracy of the results also for temperature conditions far from ambient. Finally, the same procedure was applied to a non-homogeneous solid, obtaining some very preliminary results in typical mediterranean building material, as Carrara marble.  相似文献   

18.
Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators.  相似文献   

19.
This paper addresses the computation of dispersion curves and mode shapes of elastic guided waves in axisymmetric waveguides. The approach is based on a Scaled Boundary Finite Element formulation, that has previously been presented for plate structures and general three-dimensional waveguides with complex cross-section. The formulation leads to a Hamiltonian eigenvalue problem for the computation of wavenumbers and displacement amplitudes, that can be solved very efficiently. In the axisymmetric representation, only the radial direction in a cylindrical coordinate system has to be discretized, while the circumferential direction as well as the direction of propagation are described analytically. It is demonstrated, how the computational costs can drastically be reduced by employing spectral elements of extremely high order. Additionally, an alternative formulation is presented, that leads to real coefficient matrices. It is discussed, how these two approaches affect the computational efficiency, depending on the elasticity matrix. In the case of solid cylinders, the singularity of the governing equations that occurs in the center of the cross-section is avoided by changing the quadrature scheme. Numerical examples show the applicability of the approach to homogeneous as well as layered structures with isotropic or anisotropic material behavior.  相似文献   

20.
洪轲  袁玲  沈中华  倪晓武 《物理学报》2011,60(10):104303-104303
超声技术可用于对功能梯度材料(FGMs)的性质进行评估. 由于FGMs性质的非均匀性,采用分布函数来描述FGMs弹性常数和密度沿厚度方向的变化趋势,并提出利用Taylor展开的方法来解决分布函数为任意函数时的FGMs中Lamb波的传播问题. 利用本征函数展开法得到了铁基氧化铝FGMs中Lamb波的相速度色散曲线,讨论了材料性质分布对铁基氧化铝FGMs中Lamb波传播特性的影响. 为FGMs性质(沿板厚方向变化)的反演提供了理论依据. 关键词: 功能梯度材料 Lamb波 Legendre多项式 分布函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号